P201 Workshop 10, Week 10

Please follow the instructions of your supervisor regarding timing of these problems.

Physics

Quantum computer **qubits** are vectors in two dimensions that represent, e.g., the spin of an electron or the internal state of a two-level atom. We represent the spin up state '| ↑⟩' by the unit base vector (1,0) and the the spin down state '| ↓⟩' by the unit base vector (0,1). A **one-qubit quantum gate** is a two-by-two matrix operating on spin (up and down) states or arbitrary sums (linear combinations) of spin up and spin down states.

(i) Show that the Hadamard-Gate

$$H = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} 1 & 1\\ 1 & -1 \end{array} \right)$$

shifts the spin-up and spin-down states into the linear combinations (*superpositions*)

$$H|\uparrow
angle = rac{1}{\sqrt{2}}\left(|\uparrow
angle + |\downarrow
angle
ight), \quad H|\downarrow
angle = rac{1}{\sqrt{2}}\left(|\uparrow
angle - |\downarrow
angle
ight)$$

(ii) The **NOT-Gate** *A* performs the operation $A|\uparrow\rangle = |\downarrow\rangle$ and $A|\downarrow\rangle = |\uparrow\rangle$, i.e., it flips the spin. Find the explicit form of that two-by-two matrix *A*.

Math Practise

2. Let
$$A = \begin{pmatrix} 2 & 1 \\ 3 & -1 \end{pmatrix}$$
, $x_1 = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$, $x_2 = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$

(i) Calculate Ax_1 and Ax_2 .

(ii) Check that $2Ax_1 + Ax_2 = A(2x_1 + x_2)$.

3. Define the three Pauli-Spin-Matrices

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

(i) Calculate $\sigma_i e_1$ and $\sigma_i e_2$ for i = x, y, z. Here, $e_1 = (1, 0)$ and $e_2 = (0, 1)$. (ii) Calculate $\sigma_x \sigma_z x$ for x = (1, 1). Hint: First calculate $y = \sigma_z x$.

4. Calculate the determinants of
$$A = \begin{pmatrix} 1 & 3 \\ 2 & -1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & c \\ c & 0 \end{pmatrix}$, $C = \begin{pmatrix} z & 1 \\ 1 & z^* \end{pmatrix}$.

Math Problems

5. (i) Show that the linear mappings described by

$$P_x = \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right), \quad P_y = \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right),$$

applied to a vector $\mathbf{x} = (x, y)$, yields the projection of that vector onto one of the coordinate axes (which?). Hint: Multiply P_x with \mathbf{x} and P_y with \mathbf{x} . Make a sketch. (ii) Calculate $P_x(P_y\mathbf{x})$ and $P_y(P_x\mathbf{x})$.

6. Consider the matrix $S(\theta)$ that represent the reflection of vectors about a fixed axis,

$$S(\theta) = \begin{pmatrix} \cos\theta & \sin\theta\\ \sin\theta & -\cos\theta \end{pmatrix}$$

for the special case $\theta = \pi/2$. Show that $S(\theta = \pi/2) = \sigma_x$ is a reflection along the axis x = y. Hint: apply σ_x to the vectors (1,0), (0,1), and (1,1).

7. We consider the rotation

$$R(\theta) = \left(\begin{array}{cc} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{array}\right).$$

(i) Calculate $R(\theta)e_1$ and $R(\theta)e_2$ where $e_1 = (1,0)$ and $e_2 = (0,1)$. Make a sketch and show that $R(\theta)$ performs an anti-clockwise rotation in the *x*-*y*-plane.

(ii) Consider an arbitrary vector x = (x, y). For which values of θ are the vectors $R(\theta)x$ and x collinear?

(iii) Calculate (by differentiating the matrix elements) $X = \frac{d}{d\theta}R(\theta)\Big|_{\theta=0}$ and use the result to calculate the first two terms in the Taylor expansion of $R(\theta)$ around $\theta = 0$. Show that $R(\theta) = I + X\theta + O(\theta^2)$, where *I* is the unit matrix.

(iv) Apply the matrix $I + X\theta$ to e_1 and e_2 , make a sketch, and compare with the result for the full rotation from part 1.