P201 Workshop 2, Week 2

Please follow the instructions of your supervisor regarding timing of these problems.

Physics

- 1. A quantum particle moving in a thin wire has a wave function $\Psi(x) = \frac{c}{x+i'}$ where *x* is the coordinate of the particle and *c* a positive constant. Calculate and sketch the probability function $p(x) = \Psi^*(x)\Psi(x)$ of the particle (p(x)dx) describes the probability to find the particle in the small interval *dx* around *x*). Where is the maximum of this probability?
- 2. Consider an AC circuit with external complex voltage $V(t) = V_0 e^{i\omega t}$ and complex current $I(t) = I_0 e^{i\omega t}$. The elements of a general circuit are resistors R, inductors L, and capacitors C. The admittance Y_R of a resistor R is defined as $Y_R = 1/R$, the admittance Y_L of an inductor L is defined as $Y_L = -i/(\omega L)$, and the admittance Y_C of a capacitor C is defined as $Y_C = i\omega C$.

(i) In a circuit with R and L parallel (see figure), the total admittance Y is the sum of the two admittances, and the complex current amplitude I_0 is $I_0 = YV_0$ with V_0 being the complex voltage amplitude. Calculate the modulus $|I_0|$ of the current amplitude for this circuit.

(ii) The complex resistance of a capacitor *C* is $Z_C = 1/Y_C = 1/i\omega C$. The total complex resistance *Z* of a circuit with a resistor *R* and a capacitor *C* in series is $Z = R + Z_C$. Sketch the circuit and calculate the total complex current amplitude I_0 from $V_0 = ZI_0$, where V_0 is the total complex voltage amplitude. Then calculate the complex voltage drop V_C at the capacitor and its modulus $|V_C|$. Identify a characteristic time-scale of this circuit.

Math Practise

- 3. (i) Express the real and imaginary part of a complex number z, using z and z^* .
 - (ii) Express sine and cosine in terms of the complex exponential function.

(iii) Sketch the following functions (x real): $\ln(x)$, $\exp(-x)$, $\exp(-x^2)$, $1/(1+x^4)$.

(iv) Prove that $(1/z)^* = 1/z^*$ for any complex number *z*.

- 4. Calculate the following, expressing everything in the polar representation (i) √i; (ii) √1+i; (iii) (1+i)²; (iv) (1+i)⁴.
- 5. (i) Why do inequalities like z₁ < z₂ make no sense for complex numbers?
 (ii) Sketch the area of the complex plane with numbers z fulfilling |z 2i| < 1.
- 6. (i) Write down the definition of the exponential function in terms of an infinite series.

(ii) Express $\operatorname{Re}(e^{-ix})$ and $\operatorname{Im}(e^{-ix})$ by real functions.

(iii) Calculate $e^{(\pi/2)i}$, $e^{\pi i}$, $e^{2\pi i}$.

(iv) Calculate $f(t) \equiv \text{Re}(e^{i\Omega t})$ where $\Omega = \omega + i\gamma$ and t, ω and γ are real. What is the limiting value of f(t) for $t \to \infty$ and positive γ ? What is the limiting value of f(t) for $t \to \infty$ and negative γ ?

Math Problems

7. Let $z_1 = 2 + i$, $z_2 = 3 - 2i$.

(i) Draw z_1 and z_2 as vectors in the complex plane. Calculate $z = z_1 + z_2$ and draw z as a vector in the complex plane.

(ii) Calculate $|z_1|$ and $|z_2|$ and explain their meaning.

(iii) Prove graphically that $|z_1 + z_2| \le |z_1| + |z_2|$. Confirm this by direct calculation.

(iv) What is the polar form for the complex number z = x + iy, x and y real? (v) Express z = 1 + i in polar form. Check the result by drawing z as a vector in the complex plane.

(vi) Sketch the region of complex numbers in the complex plane (*x*–*y* plane) with 1 < |z| < 2.

8. Use de Moivre's Theorem:

(i) Take the cube of a complex number z in polar form and prove two identities for trigonometric functions from that.

(ii) Do the same for the fourth power of z.

Reading for next week: FM, Chap. 3