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Chapter 1

Complex Numbers

1.1 Basic Properties

1.1.1 Introduction

Up to now you have seen 4 major sets of numbers:

• The set N of natural, 0, 1, 2, ... (non-negative integers). The sum and product of two natural numbers
are natural numbers.

• The set Z of all integers, 0,±1,±2.... This closes under addition, subtraction and multiplication.

• The set Q of all rational numbers (fractions) p/q like 3/5, closes under division as well.

• To this we add the irrational numbers, like
√

2, 31/3

• And obtain R the set of real numbers includes 1, 2.34, π, 4/5, e = e1 etc

There is a lot of subtle mathematics associated with them. Are there more rational numbers than integers?
More reals than rationals? We can also try to solve equations. In physics we usually mean “find a real
number that solves the equation”.
Example 1.1:

Find the zero of the function (polynomial) p(x) = x2 − 1.

Solution:

p(x) = x2 − 1 = 0 x = ±
√

1 = ±1. (1.1)

There are equations we can’t solve in this way, e.g. the roots or zeroes of the polynomial q(x) = x2 + 1,
are not real, i.e.

q(x) = x2 + 1 = 0 x = ±
√
−1 =????. (1.2)

The square root of −1 is not defined within the real numbers. There is no real zero of q(x) (look at the
curve q(x) = x2 + 1). We define new numbers (complex numbers) so that we can solve any equation of
the kind of (1.2).

Complex numbers are defined as z = x + iy with real x and real y and i := +
√
−1.

1



2 CHAPTER 1. COMPLEX NUMBERS

The symbol i is called ‘complex unit’ with the property

i2 = −1. (1.3)

Question: What is (−i)2?
Using i, we can solve

q(x) = x2 + 1 = 0 x = ±i. (1.4)

In z = x + iy, x = Re(z) is called real part and y = Im(z) is called imaginary part of the complex number
z. Complex numbers are elements of a set called C.

So far this may seem a bit artificial. However, we now can solve arbitrary quadratic equations, i.e.,
find solutions in C:
Example 1.2:

Solve z2 − 2z + 5 = 0.

Solution:

z2 − 2z + 5 = 0

 z1/2 = 1±
√

(−2)2

4
− 5 = 1±

√
−4 = 1±

√
4
√
−1 = 1± 2i.

In fact, within the complex numbers one can always find the root of a quadratic equation (and in fact all
the roots of an arbitrary polynomial, i.e. solve equations like z12 + 4z4 + 17 = 0 etc., although for this last
example there is no general formula as in the quadratic case.)

Actually, complex numbers first arose in the 15th century in the solution of cubic equations of the form
z3 + bz + c = 0. The general solution of such equations are

z = −

 2
1
3 b(

−27 c +
√

108 b3 + 729 c2
) 1

3

+

(
−27 c +

√
108 b3 + 729 c2

) 1
3

3 2
1
3

,

z =

(
1 + i

√
3
)

b

2
2
3

(
−27 c +

√
108 b3 + 729 c2

) 1
3
−

(
1− i

√
3
) (
−27 c +

√
108 b3 + 729 c2

) 1
3

6 2
1
3

,

z =

(
1− i

√
3
)

b

2
2
3

(
−27 c +

√
108 b3 + 729 c2

) 1
3
−

(
1 + i

√
3
) (
−27 c +

√
108 b3 + 729 c2

) 1
3

6 2
1
3

, (1.5)

and therefore inolve the complex unit i, even when the resulting solutions are real!

1.1.2 Basic Definitions

If we look at a pair of two complex numbers

z1 = x1 + iy1, z2 = x2 + iy2, (1.6)

we can define all the standard algebraic manipulations.
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Equality:

z1 = z2 ⇔ x1 = x2 and y1 = y2. (1.7)

Addition:

z1 ± z2 = (x1 ± x2) + i(y1 ± y2). (1.8)

Multiplication:

z1z2 = (x1 + iy1)(x2 + iy2) = x1x2 + i(x1y2 + x2y1) + i2y1y2

= (x1x2 − y1y2) + i(x1y2 + x2y1). (1.9)

Zero:

z = x + iy = 0⇔ x = 0 and y = 0. (1.10)

Other:

z = x + iy iz = i(x + iy) = ix− y = −y + ix

(−i)i = −(i2) = −(−1) = 1
i3 = i(i2) = −i

i4 = (i2)(i2) = 1
1
i

=
i
i2

=
i
−1

= −i. (1.11)

The complex conjugate z̄ of a complex number z = x + iy is defined as
z = x + iy z̄ = x− iy.

(Sometimes one writes z∗ instead of z̄.) We have

Re(z) = Re(z̄), Im(z) = −Im(z̄). (1.12)

From this definition, we find

Re(z) = x =
z + z̄

2
, Im(z) = y =

z− z̄
2i

. (1.13)

(see next workshop for some exercises).
Division: we use a trick by calculating zz̄:

zz̄ = (x + iy)(x− iy) = x2 + y2. (1.14)

(Check this !). For z 6= 0,

1
z

=
z̄
zz̄

=
x− iy

x2 + y2 =
x

x2 + y2 − i
y

x2 + y2 . (1.15)

Other more complicated examples were dealt with in class and the workshop.



4 CHAPTER 1. COMPLEX NUMBERS

Figure 1.1: Complex number as a vector

1.2 Polar Form of Complex Numbers

1.2.1 Vector Representation

A complex number z = x + iy has two real components: the real part Re(z) = x and the imaginary part
Im(z) = y. Let us write them in the form of a 2D vector, cf. Fig. 1.1.

z = x + iy↔ r = (x, y). (1.16)

Polar Form: Any complex number z = x + iy can be written in polar form, (remember that r = (r cos θ, r sin θ)
in polar coordinates)

z = x + iy = r cos(θ) + ir sin(θ)
x = r cos(θ), y = r sin(θ)

r =
√

x2 + y2 =
√

zz̄

tan(θ) =
y
x
 θ = arctan

( y
x

)
. (1.17)

1.2.2 Argument and Modulus

The length of the vector r = (x, y) representing the complex number z = x + iy,

|z| := r =
√

x2 + y2 =
√

zz̄ (1.18)

is called modulus of z.
The angle θ,

arg(z) := θ = arctan
( y

x

)
(1.19)

is called the argument of z. The angle θ is usually restricted to −π < θ ≤ π, even though any interval of
length 2π will do, and we sometimes use 0 ≤ θ < 2π.



1.2. POLAR FORM OF COMPLEX NUMBERS 5

1.2.3 Manipulations in Vector/Polar Form

Addition:

(x, y) ↔ z = x + iy
(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) ↔ z1 + z2 = (x1 ± x2) + i(y1 ± y2). (1.20)

Therefore, we have to add the vectors representing the complex numbers.
Complex Conjugate:

z = x + iy = r cos(θ) + ir sin(θ) 
z̄ = x− iy = r cos(θ)− ir sin(θ) = r cos(−θ) + ir sin(−θ). (1.21)

The angle becomes negative: check what this means geometrically!
Multiplication:

z1 = r1 cos(θ1) + ir1 sin(θ1), z2 = r2 cos(θ2) + ir2 sin(θ2) 
z1z2 = r1r2[cos(θ1) cos(θ2)− sin(θ1) sin(θ2)] + ir1r2[cos(θ1) sin(θ2) + sin(θ1) cos(θ2)]

= r1r2[cos(θ1 + θ2) + i sin(θ1 + θ2)] (1.22)

This means that

|z1z2| = |z1||z2|, arg(z1z2) = arg(z1) + arg(z2). (1.23)

Try to sketch an example for this in the x− y diagram for yourself!

1.2.4 Complex exponential

Let us differentiate a complex number of unit modulus, z = cos θ + i sin θ w.r.t. θ.

d
dθ

(cos θ + i sin θ) = − sin θ + i cos θ = i(cos θ + i sin θ). (1.24)

In short,
d
dθ

z = iz (1.25)

This suggests that we can write z as z = eiθ . We shall construct further proof the consistency of this
suggestion (which can also be used to define the complex exponent) below.

1.2.5 De Moivre’s Theorem

We can easily generalise the multiplication of two complex numbers in polar form to calculcate an arbi-
trary power of z, zn (integer n):

z = r[cos(θ) + i sin(θ)] 
z2 = r2[cos(2θ) + i sin(2θ)] 
z3 = zz2 = r3[cos(3θ) + i sin(3θ)] 

... (1.26)
zn = rn[cos(nθ) + i sin(nθ)] 

(1.27)

Since zn = rn[cos(θ) + i sin(θ)]n, this means

[cos(θ) + i sin(θ)]n = cos(nθ) + i sin(nθ) (1.28)
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which is a useful equation for proving trigonometric identities; it is also useful for doing many integrals
that occur in physics.
Example:

[cos(θ) + i sin(θ)]2 = [cos(2θ) + i sin(2θ)]⇔
cos2(θ)− sin2(θ) + 2i cos(θ) sin(θ) = cos(2θ) + i sin(2θ)⇒

cos(2θ) = cos2(θ)− sin2(θ) , sin(2θ) = 2 cos(θ) sin(θ). (1.29)

Clearly, this is entirely consistent with the properties of the exponent: (eiθ)n = (ea)b with a = iθ and b = n
is eab = einθ .

1.3 The Exponential Function

1.3.1 A Power Series for ex

We already know the exponential function ex for real x. We want to generalise it to complex arguments z
because it is the most important function in your (physics) life! Let’s have a look at ex again. We can define
ex as follows:

The exponential function f (x) = exp(x) is the unique solution of the first order
differential equation f ′(x) = f (x), f (x = 0) = 1.

This describes, for example, the increase of the number f of animals with time x (strange choice of
variable, I know) at unit rate 1, if at time x = 0 there was one animal.
Task: 1. Think of other, better examples.
2. Can you define for e−x?
In this case, there are more and better examples, se last semester’s course notes.

Now, the solution of the differential equation above is f (x) = ex, but can we express this in a different
manner? Suppose you had no exp–button on your scientific calculator, and you were a survivor on a
remote planet with the task to reconstruct mathematics and physics as a part of personkind’s knowledge,
how would you calculate ex ? Let’s try to write f (x) as a ‘polynomial’

f (x) = 1 + a1x + a2x2 + a3x3 + ..., (1.30)

where we have to determine the constants a1, a2,... from the differential equation:

f ′(x) = a1 + 2a2x + 3a3x2 + 4a4x3 + ...

f (x) = 1 + a1x + a2x2 + a3x3 (1.31)

We now equate terms of the same power in x, since different powers vary in different ways as x changes,
so we can disentagle the uinfinite series (cf. equality of polynomials)

 a1 = 1, a2 =
1

1 · 2 , a3 =
1

1 · 2 · 3 , .. (1.32)

We recognise that the general form of this power series is

f (x) = exp(x) = 1 +
1
1!

x +
1
2!

x2 +
1
3!

x3 + ..., n! := 1 · 2 · 3... · n. (1.33)

The symbol n! := 1 · 2 · 3... · n is called the factorial. One defines 0! = 1. We write the equation for f (x) in
another, more condensed and elegant form

exp(x) =
∞

∑
n=0

xn

n!
(1.34)
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You have to remember this formula throughout your whole life. Now, we generalise this ‘all–your–life’
formula to complex numbers z,

exp(z) =
∞

∑
n=0

zn

n!
. (1.35)

1.3.2 Power Series for sin(x) and cos(x)

Next to the exponential, certainly sin and cos belong to some of the most important functions in physics.
In much the same spirit as above, we can define them by their differential equations, and derive an
expression in terms of a series. Here we state the result, that can be used to define sin and cos:

sin(x) :=
∞

∑
n=0

(−1)nx2n+1

(2n + 1)!
= x− x3

3!
+

x5

5!
− x7

7!
+ ...

cos(x) :=
∞

∑
n=0

(−1)nx2n

(2n)!
= 1− x2

2!
+

x4

4!
− x6

6!
+ ... (1.36)

task: Calculate the derivatives of sin(x) and cos(x) from the series definition above and check that it is
consistent! (i.e., sin′(x) = cos(x) and cos′(x) = − sin(x).

Now we are in a position to test our series for the complex exponential,

exp(z) =
∞

∑
n=0

zn

n!
(1.37)

We use it for a purely imaginary variable,

z = x + iy = iy, (x = 0), (1.38)

where y is real (remember that now that we have both real and complex numbers, one always has to state
which type of number one is talking about). Remember

i0 = 1, i1 = i, i2 = −1, i3 = −i, i4 = 1, i5 = i, ... (1.39)

This lead to

exp(iy) = 1 +
iy
1!
− y2

2!
− iy3

3!
+

y4

4!
+

iy5

5!
− ... (1.40)

The terms are alternately real and imaginary, so we cansplit the series

exp(iy) =
(

1− y2

2!
+

y4

4!
− ...

)
+ i
(

y
1!
− y3

3!
+

y5

5!
+ ...

)
. (1.41)

We compare the right and side of this equation with the series for sin(y) and cos(y), we find the important
Euler’s Formula

exp(iy) = cos(y) + i sin(y), y real. (1.42)

Using Euler’s formula for the variable y = θ (angle in our polar representation), we find for any complex
number z the representation

z = x + iy = r[cos(θ) + i sin(θ)] = r exp(iθ). (1.43)



8 CHAPTER 1. COMPLEX NUMBERS

1.4 Euler’s Formula

We recall Euler’s formula

exp(iθ) = cos(θ) + i sin(θ) (1.44)

and our polar representation of a complex number z = x + iy,

z = x + iy = r[cos(θ) + i sin(θ)] = r exp(iθ). (1.45)

Let us have a look at the polar diagram: z is represented in the complex plane z–plane, i.e. the x–y–plane,
where

x = Re(z), y = Im(z). (1.46)

r =
√

x2 + y2 is the modulus of z, i.e. geometrically the length of the vector (x, y). The argument arg(z) =
θ is the angle between the vector (x, y) and the x–axis.
Motion along a line: we keep θ fixed and change r from small to larger values. The corresponding complex
numbers move along a straight line that has a fixed angle θ with the x–axis.
Motion along a circle: we keep r fixed and change θ from 0 to larger values. We recognize that the corre-
sponding complex numbers move along a circle with constant radius r.

1.4.1 The Unit Circle

For r = 1, the complex numbers

z(θ) = cos(θ) + i sin(θ) = exp(iθ) (1.47)

are all situated on a circle with radius r = 1 around the origin in the complex z–plane.
Coming back to the complex exponential, we notice

sin(θ) = Im(eiθ), cos(θ) = Re(eiθ), (1.48)

where we wrote ez for exp(z) (both are the same, this is only a different notation). We obtain sin and cos
from the exponential of imaginary argument. What happens if we calculate the exponential for a general
complex argument z = x + iy that has both a real and an imaginary part? We calculate

ez = ex+iy = exeiy = ex[cos(y) + i sin(y)] = ex cos(y) + iex sin(y). (1.49)

Please note that the real part x only determines the modulus r = ex of ez,

|ez| = |ex+iy| = ex. (1.50)

In particular, this means

|ez| = |ex+iy| = |ex||eiy| = ex, (1.51)

Since |ex| = ex for real x, we see that

|eiy| = 1. (1.52)

The circle is useful to describe, e.g., the motion of a particle on a circle. If we increase the angle θ linearily
as a function of time t,

θ = ωt, (1.53)
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where ω is a fixed angular frequency (in s−1), we have

z(t) = r exp(iωt) = r cos(ωt) + ir sin(ωt), (1.54)

where we allowed an arbitrary radius r again. The real part of z describes the x–position, the imagi-
nary part of z describes the y–position of the particle on the circle. The complex number z itself is not a
measurable quantity, but it contains useful information (x and y–position of the particle).

Another important use of the complex exponent is in describing oscillations. This is due the fact that
we can calculate the harmonic (sinusoidal) oscillations in terms of a complex exponent, when we argue
that the real part is to be taken. The standard place to use such tecniques is in cicuit theory. A voltage is
then represented by V = V0 cos(ωt) = Re(V0eiωt), and the real part in the expression will be conveniently
forgotten for a while. The response of a capacitor to such an applied voltage, I = dQ

dt = d
dt CV then leads

to the complex equation (with I = I0eiωt) I0 = iωCV0, i.e. we have a simple relation between applied
potential and current, just like the V = IR relation for a resistor. We can add such complex resistances,
and take the rela part of the currents or volatges at the end; the phase of the complex numbers gives the
phase difference betwen voltage and current.

1.4.2 Roots, n–th roots of unity

A number w is called an n–th root of a complex number z if wn = z. We write carelessly w = z1/n.
The solutions of the equation zn = 1 where n is a positive integer are called n–th roots of unity. We

have

zn = 1 |zn| = |z|n = 1 |z| = 1 z = eiθ , (1.55)

therefore we have to solve

einθ = 1. (1.56)

Since

e2πki = cos(2πk) + i sin(2πk) = 1, k = 0, 1, 2, ... (1.57)

we have n different solutions, i.e., n solutions where the phase is between 0 and 2π,

z = e2kπi/n, k = 0, 1, 2, .., n− 1. (1.58)

1.5 Trigonometric and Hyperbolic Functions

1.5.1 Definitions

We recall Euler’s formula for the sine and cosine,

exp(ix) = cos(x) + i sin(x), (1.59)

where x is a real number. From this, we can express sine and cosine as

cos(x) :=
1
2

(
eix + e−ix

)
sin(x) :=

1
2i

(
eix − e−ix

)
. (1.60)

We now define the hyperbolic functions ‘hyperbolic cosine’ and ‘hyperbolic sine’ as

cosh(x) :=
1
2
(
ex + e−x)

sinh(x) :=
1
2
(
ex − e−x) , (1.61)
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Figure 1.2: Hyperbolic functions

i.e. analogous to cosine and sine but without the imaginary unit i. Using i2 = −1, we recognise that

cosh(x) = cos(ix), sinh(x) = −i sin(ix), (1.62)

which means that trigonometric and hyperbolic functions are closely related. Their behaviour as a func-
tion of x, however, is different: while sine and cosine are oscillatory functions, the hyperbolic functions
cosh(x) and sinh(x) are not oscillatory, because they are just linear combinations of ex and e−x which are
not oscillatory. We have the following properties:

cosh(0) = 1, cosh(x) = cosh(−x) (1.63)

cosh(x → ∞) → 1
2

ex →x→∞ ∞, cosh(x → −∞)→ 1
2

e−x →x→−∞ ∞

sinh(0) = 0, sinh(x) = − sinh(−x)

sinh(x → ∞) → 1
2

ex →x→∞ ∞, sinh(x → −∞)→ −1
2

e−x →x→−∞ −∞.

from which we already can sketch the two hyperbolic functions, see Fig. 1.2.
In addition, one defines the hyperbolic tangent and cotangent

tanh(x) :=
sinh(x)
cosh(x)

, coth(x) :=
cosh(x)
sinh(x)

. (1.64)

1.5.2 Inverse hyperbolic functions

Inverting

y = sinh(x)→ x = sinh−1(y), (1.65)

we find the inverse hyperbolic sine sinh−1 by setting

y =
ex − e−x

2
 e2x − 2yex − 1 = 0. (1.66)

This is a quadratic equation in u = ex with the solutions

u± = y±
√

y2 + 1. (1.67)



1.5. TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS 11

-4 -2 0 2 4
x

-5

0

5

y

tan(x)
coth(x)

Figure 1.3: Hyperbolic tangent and cotangent.

Since u = ex > 0 is positive, we must take the positive solution u+ and must discard the negative solution
u−. Therefore,

ex ≡ u = y +
√

y2 + 1 x = ln
(

y +
√

y2 + 1
)

, (1.68)

which means that

sinh−1(y) = ln
(

y +
√

y2 + 1
)

. (1.69)

Similarly, one obtains

tanh−1(y) =
1
2

ln
[

1 + y
1− y

]
. (1.70)

The cosh−1 is a bit more tricky.

1.5.3 Derivatives

These are obtained by going back to the definitions of the hyperbolic functions.

sinh′(x) = cosh(x), cosh′(x) = sinh(x), tanh′(x) = 1− tanh2(x). (1.71)

1.5.4 Hyperbolic Identities

These also are obtained by using the definitions of cosh and sinh:

cosh2(x)− sinh2(x) = 1, cosh(2x) = 1 + 2 sinh2(x)
sinh(2x) = 2 sinh(x) cosh(x). (1.72)
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Chapter 2

Second Order Linear Differential
Equations

2.1 Ordinary 2nd Order Linear Differential Equations

2.1.1 Origin of Differential Equations: the Harmonic Oscillator as an Example

We consider a particle of mass m that is moving along a straight line in x–direction. At time t, its coor-
dinate is x = x(t). It is attached to springs with spring constant k > 0 so that there is a ‘restoring’ force
fr(x) = −kx acting on the particle. At x = 0, the mass is in equilibrium and no force is acting. In addition,
there is a friction force f f (v) = −γv acting on the particle which is proportional (with friction constant
γ > 0) to its velocity v = ẋ(t), and an external force fe(x) that could have its origin in, e.g., some crazy
experimentalist fiercly forcing the mass to follow her hand.

Newton’s law states that mẍ(t) equals the sum fr(x) + f f (x) + fe(x) of all forces on the particle, i.e.

mẍ(t) = −kx− γẋ(t) + fe(x)⇔

ẍ(t) +
γ

m
ẋ(t) +

k
m

x(t) =
1
m

fe(x), k > 0, γ > 0. (2.1)

To find the position x of the particle at time t, i.e. the function x(t), we have to solve the differential
equation of the forced, damped linear harmonic oscillator, Eq. (2.1). Learn this standard form of the
forced damped harmonic oscillator by heart and it will save you from much misery in the future.
CHECK: to which forces do the terms ‘forced’, ‘damped’, and ‘harmonic’ refer ?

Is this a well–defined task? No, in order to know x(t) at all times later than, say, t = 0, we must specify
the initial conditions, i.e. the initial position of the particle x(t = 0) and its initial velocity ẋ(t = 0).

Eq. (2.1)is called 2nd order differential equation because the highest derivative appearing is a second
derivative. Because Newton’s law (for a general force) leads to second derivatives (acceleration term!),
2nd order differential equations belong to the most important differential equations in physics.

Eq. (2.1) is called linear because we don’t have terms like ẍ2(t) or x4(t). In general and in more com-
plicated cases (e.g., motion in three dimensions), such terms can leads to chaos. The study of differential
equations therefore is of paramount importance in order to understand chaos.

Eq. (2.1) is called Ordinary because the desired function x is a function of one variable (t) only and
not more than one variable, in which case differential equations are called partial differential equations.

2.1.2 Definitions

In the mathematic literature, people sometimes don’t care about the physical background of equations and
introduce other notations. In the following, instead of x(t), ẋ(t) etc we discuss differential equations for
functions y(x) of one variable x, with y′(x) denoting the first and y′′(x) the second derivative, respectively.

13
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A 2nd order inhomogeneous linear differential equation for the function y(x) has the form

y′′(x) + p(x)y′(x) + q(x)y(x) = f (x), (2.2)

where p(x), q(x), and f (x) are known functions of x and y(x) is the function one would like to calculate.
In general, there is no method to obtain a solution y(x) of Eq. (2.2 that could be written down in a

simple form, such as y(x) = sin(x) etc.
A 2nd order homogeneous linear differential equation for the function y(x) has the form

y′′(x) + p(x)y′(x) + q(x)y(x) = 0, (2.3)

i.e. the term f (x) is zero on the r.h.s. of Eq.(2.2).
A 2nd order inhomogeneous linear differential equation for the function y(x) with constant coeffi-
cients has the form

y′′(x) + py′(x) + qy(x) = f (x), (2.4)

where p and q are real numbers, f (x) is a known function of x, and y(x) is the function one would like to
calculate.
A 2nd order homogeneous linear differential equation for the function y(x) with constant coefficients
has the form

y′′(x) + py′(x) + qy(x) = 0, (2.5)

where p and q are real numbers, and y(x) is the function one would like to calculate.
Initial Value Problem for 2nd order differential equation for a function y(x): To solve the initial value
problem for a 2nd order differential equation for a function y(x) means to solve y(x) for the specific, given
initial conditions

y(x = x0) = y0, y′(x = x0) = y′0. (2.6)

In the example of our harmonic oscillator this means that we start the motion at t = t0 = 0 at the initial
position x(t0) = x0 with the initial velocity ẋ(t0) = ẋ0.

2.1.3 How to Solve Them

In general, there is no recipe or general method of how to solve a given differential equation. In this
lecture, we only discuss the 2nd order inhomogeneous linear differential equation for the function y(x)
with constant coefficients, for which there is a general method. ‘Differential Equations’ is a difficult topic,
and still today a research subject in mathematics. Generations of people have tried to solve differential
equations by finding new exact solutions, developing approximation techniques etc. For example, a big
problem in Einstein’s theory of gravitation is that the fundamental (partial) differential equations are
known, but only very few exact solutions are known. This is still a hot topic today.

To warm up a bit, we solve a few simple cases of Eq.(2.1).
EXAMPLE: a particle of mass m under a constant external force fe(x) = fe that does not depend on x.

We have

ẍ(t) =
1
m

fe  ẋ(t) =
1
m

fet + ẋ(0) 

x(t) =
1

2m
fet2 + ẋ(0)t + x(0). (2.7)

Here, the values x(0) and ẋ(t = 0) determine the initial condition at t = 0.
CHECK: go back to Pisa (Galilei) and establish the relation between this equation and the experiment of
a freely falling mass m. In a ‘Gedankenexperiment’ (thought experiment), change the initial conditions
ẋ(t = 0) and x(0) and discuss what changes then. What does a positive or a negative fe mean?
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2.2 2nd order homogeneous linear differential equations with con-
stant coefficients I

We recall that this type of equation has the form

y′′(x) + py′(x) + qy(x) = 0, (2.8)

where p and q are real numbers, and y(x) is the function one would like to calculate. An example is the
differential equation of the damped linear harmonic oscillator

ẍ(t) +
γ

m
ẋ(t) +

k
m

x(t) = 0, k > 0, γ > 0, (2.9)

cf. Eq.(2.1).

2.2.1 Undamped oscillator

Consider
y′′(x) + qy(x) = 0, q > 0.

This is the case p = 0 of Eq. (2.8). An example for this is the differential equation of the undamped linear
harmonic oscillator

ẍ(t) +
k
m

x(t) = 0, (2.10)

where k > 0 here, cf. Eq.(2.1). From our physical intuition, we know that the mass point described by
Eq.(2.10) performs oscillations at an angular frequency ω. Therefore, we try sin and cos functions as
solution: If we write

x(t) = x1 sin(ωt) ẋ(t) = x1ω cos(ωt)
 ẍ(t) = −x1ω2 sin(ωt) = −ω2x(t). (2.11)

Here, x1 is an arbitrary constant. The function x(t) = x1 sin(ωt) fulfills the differential equation Eq. (2.10),
if

ω2 =
k
m

. (2.12)

If on the other hand we write

x(t) = x2 cos(ωt) ẋ(t) = −x2ω sin(ωt)
 ẍ(t) = −x2ω2 cos(ωt) = −ω2x(t), (2.13)

we again recognise that the functionx(t) = x2 cos(ωt) fulfills the differential equation Eq. (2.10), if ω2 =
k/m (same as before). Again, x2 is an arbitrary constant. Therefore, we find two solutions of the second
order differential equation Eq. (2.10). Now we are a bit confused. Let us summarize what we have found
so far, using our ‘mathematical notation’,

y′′(x) + qy(x) = 0, q > 0 
y(x) = y1(x) = y1 sin(

√
qx), y(x) = y2(x) = y2 cos(

√
qx). (2.14)

We now make an important observation:
THEOREM: With two solutions y1(x) and y2(x) of a linear homogeneous differential equation, also
the sum y1(x) + y2(x) is a solution of the linear homogeneous differential equation.
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PROOF:

y′′1 (x) + p(x)y′1(x) + q(x)y1(x) = 0, y′′2 (x) + p(x)y′2(x) + q(x)y2(x) = 0 [
y′′1 (x) + y′′2 (x)

]
+ p(x)

[
y′1(x) + y′2(x)

]
+ q(x) [y1(x) + y2(x)] = 0 

[y1 + y2]
′′ (x) + p(x) [y1 + y2]

′ (x) + q(x) [y1(x) + y2(x)] = 0.

We have used the fact that the sum of the derivatives of two functions is the derivative of the sum of the
functions.

The general solution of y′′(x) + qy(x) = 0, q > 0 can be written as the sum

y′′(x) + qy(x) = 0 y(x) = y1 sin(
√

qx) + y2 cos(
√

qx). (2.15)

2.2.2 Initial Value Problem

Here we consider
ẍ(t) + ω2x(t) = 0,

the equation of the undamped linear harmonic oscillator. Note that we write x(t) instead of y(x) here.
We have found the general solution as

x(t) = x1 sin(ωt) + x2 cos(ωt), (2.16)

where x(t) is the position x at time t. As mentioned above, in order to know x(t) at all times later than,
say, t = 0, we must specify the initial conditions, i.e. the initial position of the particle x0 = x(t = 0) and
its initial velocity v0 = ẋ(t = 0), i.e.

x0 = x(t = 0) = x1 sin(ω0) + x2 cos(ω0) = x2

v0 = ẋ(t = 0) = x1ω cos(ωt)− x2ω sin(ωt)|t=0 = x1ω. (2.17)

Therefore, we can express the parameters x1 and x2 by the given initial values x0 and v0 and obtain

x(t) =
v0

ω
sin(ωt) + x0 cos(ωt). (2.18)

2.2.3 Exponential

Consider
y′′(x) + qy(x) = 0, q < 0.

We notice that for q < 0 the argument in the sin and cos in Eq.(2.15) becomes imaginary since
√

q =√
−|q| = i

√
|q| for q < 0. Let us find a solution by recalling that the exponential function f (x) = exp(x)

fulfills

f (x) = ex  f ′(x) = ex  f ′′(x) = ex  ... (2.19)

More generally, we have

f (x) = eλx  f ′(x) = λeλx  f ′′(x) = λ2eλx  f ′′(x) = λ2 f (x) (2.20)

f (x) = e−λx  f ′(x) = −λe−λx  f ′′(x) = (−λ)2e−λx  f ′′(x) = λ2 f (x).

Comparing this to our differential equation,

y′′(x)− |q|y(x) = 0⇔ y′′(x) = |q|y(x), (2.21)
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we recognize by comparing with Eq. (2.20) that two independent solutions of Eq. (2.21) are

y′′(x)− |q|y(x) = 0, q 6= 0 

y1(x) = y1e
√
|q|x, y2(x) = y2e−

√
|q|x. (2.22)

As above, the most general solution again is the sum of these two, i.e. the linear combination of e−
√
|q|x

and e
√
|q|x with the two independent constants y1 and y2,

y′′(x)− |q|y(x) = 0 

y(x) = y1e
√
|q|x + y2e−

√
|q|x. (2.23)

2.2.4 Summary

We summarize the two pairs of solutions for q > 0 and q = −|q| < 0 of y′′(x) + qy(x) = 0 in the following
table:

y′′(x) + qy(x) = 0, q = k2 > 0 y′′(x) + qy(x) = 0, q = −κ2 < 0
two solutions two solutions
y1(x) = y1 sin(kx), y2(x) = y2 cos(kx) y1(x) = y1eκx, y2(x) = y2e−κx

general solution general solution
y(x) = y1 sin(kx) + y2 cos(kx) y(x) = y1eκx + y2e−κx

character: character:
oscillatory (sin and cos) exponential (decreasing and incr.)

Note that the sign of q makes all the difference!

2.3 2nd order homogeneous linear differential equations with con-
stant coefficients II

Now we attack the case of arbitrary p and q in our differential equation

y′′(x) + py′(x) + qy(x) = 0. (2.24)

Remember that for p > 0 and q > 0 this corresponds to the differential equation Eq. (2.1) of the damped
linear harmonic oscillator. We already know that this system performs oscillations ( sin, cos) that can
be exponentially damped ( exp). Therefore, we expect something related to sin, cos, exp functions. But
these are all related to each other if we recall what we have learned about complex numbers:

exp(ix) = cos(x) + i sin(x), x real

cos(x) =
eix + e−ix

2
= Re[eix]

sin(x) =
eix − e−ix

2i
= Im[eix]. (2.25)

Furthermore, for arbitrary complex z = x + iy,

ez = ex+iy = exeiy = ex[cos(y) + i sin(y)] = ex cos(y) + iex sin(y). (2.26)

The function ez with complex z comprises the real exponential as well as sin and cos.
Let us therefore try an exponential Ansatz in Eq. (2.24),

y(x) = ezx  y′′(x) + py′(x) + qy(x) = [z2 + pz + q]ezx = 0. (2.27)
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We recognize that y(x) = ezx fulfills the differential equation, if the bracket [...] is zero:

[z2 + pz + q] = 0. (2.28)

This is a quadratic equation which in general has two solutions,

z2 + pz + q = 0 z1/2 = − p
2
±
√

p2

4
− q. (2.29)

Various cases arrise for different signs of the argument of the square root (the discriminant). Let us look
at each of these cases in turn.

2.3.1 Positive discriminant

In the case p2

4 − q > 0,

z1/2 = − p
2
±
√

p2

4
− q (2.30)

are both real and the two solutions fulfilling Eq. (2.24) are

p2

4
− q > 0 y1(x) = y1e[− p

2 +
√

p2
4 −q]x, y2(x) = y2e[− p

2−
√

p2
4 −q]x (2.31)

The general solution is the linear combination of the two,

p2

4
− q > 0 y(x) = y1e[− p

2 +
√

p2
4 −q]x + y2e[− p

2−
√

p2
4 −q]x. (2.32)

In this case there are no oscillations at all. The ‘damping term’ py′(x) is too strong.

2.3.2 negative discriminant

In the case p2

4 − q < 0, the two zeros become complex:

z1/2 = − p
2
±
√

p2

4
− q = − p

2
± i

√
q− p2

4
=: − p

2
± iΩ, (2.33)

where we define an angular frequency Ω =
√

q− p2/4. Now, the two solutions fulfilling Eq. (2.24) are

p2

4
− q < 0 y1(x) = y1e[− p

2 +iΩ]x, y2(x) = y2e[− p
2−iΩ]x, Ω :=

√
q− p2

4
. (2.34)

The general solution is the linear combination of the two,

p2

4
− q < 0 y(x) = y1e[− p

2 +iΩ]x + y2e[− p
2−iΩ]x, Ω :=

√
q− p2

4
− q. (2.35)

We rewrite this as

y(x) = y1e[− p
2 +iΩ]x + y2e[− p

2−iΩ]x = e−px/2
{

y1eiΩx + y2e−iΩx
}

= e−px/2 {y1[cos(Ωx) + i sin(Ωx)] + y2[cos(Ωx)− i sin(Ωx)]}
= e−px/2 {[y1 + y2] cos(Ωx) + i[y1 − y2] sin(Ωx)} . (2.36)
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Now, this seems a bit odd since we have got a complex solution due to the term i(y1 − y2). However,
the constant coefficients y1 and y2 can be complex anyway (and still y(x) is a solution of the differential
equation). If we are only interested in real functions y(x), we can re–define new constants c1 := y1 + y2
and c2 := i[y1 − y2] such that the general solution becomes

y′′(x) + py′(x) + qy(x) = 0,
p2

4
− q < 0 

y(x) = e−px {c1 cos(Ωx) + c2 sin(Ωx)} . (2.37)

Still c1 and c2 could be complex numbers, but we can choose them real if we only want real functions
y(x).

2.3.3 The Marginal Case

For the marginal case p2

4 − q = 0 we have only one solution, z = −p/2, and thus only one integration
constant. This is clearly insufficient! Help can be found in the expression for the simplest marginal case,

y′′(x) = 0

which has as solution
y(x) = a + bx.

We therefore substitute y(x) = (a + bx) exp(−px/2) and find

y(x) = (a + bx) exp(−px/2),

y′(x) = b exp(−px/2)− p
2
(a + bx)exp(−px/2),

y′′(x) = −bp exp(−px/2) +
p2

4
(a + bx)exp(−px/2). (2.38)

Using the differential equation y′′(x) + py′(x) + qy(x) = 0, we find that

y′′(x) + py′(x) + qy(x) =
(

p2

4
− p2

2
+ q
)

(a + bx)exp(−px/2)− bp exp(−px/2) + bp exp(−px/2) = 0.(2.39)

Here we have used q = 4p2. Thus

y(x) = (a + bx) exp(−px/2).

2.3.4 Summary

Solutions of y′′(x) + py′(x) + qy(x) = 0:

p2 > 4q y(x) = exp(− p
2

x)

[
y1 exp

(√
p2

4
− qx

)
+ y2 exp

(
−
√

p2

4
− qx

)]

p2 < 4q y(x) = exp(− p
2

x)

[
c1 cos

(√
q− p2

4
x

)
+ c2 sin

(√
q− p2

4
x

)]

p2 = 4q y(x) = exp(−px/2)(a + bx)
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2.4 Inhomogeneous Equations

Now we arrive at the most general case we treat here, the second order inhomogeneous linear differen-
tial equation for the function y(x) with constant coefficients

y′′(x) + py′(x) + qy(x) = f (x), (2.40)

where p and q are real numbers, f (x) is a known function of x, and y(x) is the function one would like
to calculate. In the following, we become a bit more ‘physical’ and discuss the differential equation of the
forced, damped linear harmonic oscillator, Eq. (2.1),

ẍ(t) + 2γẋ(t) + ω2x(t) =
1
m

f (x), γ > 0. (2.41)

instead of Eq. (2.40). Since this means that both p > 0 and q > 0 in Eq. (2.40), we are not very general.
Similar results can be obtained for the the general case.

2.4.1 Solution to inhomogeneous equations

For inhomogeneous equations the superposition principle is violated in a specail manner: we can easily
show that the general solution of the differential equation can be written as the sum of a general solution
of the related homogeneous equation, and a special solution to the inhomogeneous one. In other words if
yspecial(x) satisfies the inhomogeneous equation y′′(x) + py′(x) + qy(x) = f (x), then yhom(x) + yspecial(x)
satisfies this same equation if yhom(x) satisfies the equation y′′(x) + py′(x) + qy(x) = 0. This can be
checked easily

y′′hom(x) + y′′special(x) + p(y′hom(x) + y′special(x)) + q(yhom(x) + yspecial(x)) =

y′′hom(x) + py′hom(x) + qyhom(x) + y′′special(x) + py′special(x) + q + yspecial(x) = 0 + f (x) (2.42)

The art of the exercise is thus in finding a special solution of the inhomogeneous problem.

2.5 * Green’s function approach

2.5.1 * Initial Conditions for the Homogeneous Case

The solution for the homogeneous equation f ≡ 0 was obtained above in Eq. (2.40),

yh(x) = e−
p
2 x {c1 cos(Ωx) + c2 sin(Ωx)} ,

xh(t) = e−γt {x1 cos(Ωt) + x2 sin(Ωt)} , (2.43)

with Ω =
√

ω2 − γ/2.
Specifying the initial conditions

xh(t = 0) = x0, ẋh(t = 0) = v0, (2.44)

we find

xh(t) = x0

{
e−γt cos(ωt) +

δ

ω
e−γt sin(ωt)

}
+ v0e−γt sin(ωt)

ω
. (2.45)

Thus xh(t) describes the motion of the harmonic oscillator for f ≡ 0 (homogeneous case). If we choose
the initial time t = t0 instead of t = 0, we have

xh(t) = x0

{
e−γ[t−t0] cos(ω[t− t0]) +

δ

ω
e−γ[t−t0] sin(ω[t− t0])

}
+ v0e−γ[t−t0] sin(ω[t− t0])

ω
, (2.46)
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i.e. everything remains the same; only the ‘origin’ of time t0 is shifted, i.e the time scale is shifted by t0.

EXERCISE: check that Eq. (2.45) fulfills the correct initial conditions!

2.5.2 * The Inhomogeneous Case: Effect of the External Force

Now let us discuss the additional effect of the external force, i.e. the inhomogeneous term f (t)/m in Eq.
(2.41). First of all, we recognize that f (t)/m is an additional acceleration, a(t) = f (t)/m, of the mass m
due to the force f (t), using Newton’s law. What is the additional displacement, ∆x(t), of the mass due to
that acceleration? In a very short time interval from time t = t′ to t = t′ + δt′, due to the acceleration a(t′)
the mass aquires the additional velocity

v(t′) = a(t′)δt′ =
f (t′)

m
δt′. (2.47)

The subsequent additional displacement ∆x(t > t′) has to be proportional to that additional velocity
and can be calculated using Eq.(2.46) with ‘initial’ additional shift x0 = 0 and ‘initial’ additional velocity
v0 = v(t′),

∆x(t > t′) = e−γ[t−t′ ] sin(ω[t− t′])
ω

× v(t′)

= e−γ[t−t′ ] sin(ω[t− t′])
ω

× f (t′)
m

δt′,

=: G(t− t′)× f (t′)
m

δt′, (2.48)

where in the last line we introduced an abbreviation for the term e−γ[t−t′ ]sin(ω[t− t′])/ω. The function
G(t − t′) is called response function (Green’s function) of the harmonic oscillator since it describes its
response to an additional, infinitesimal acceleration f (t′)δt′/m. Note that we have made no additional
assumptions on how this force f (t′) actually behaves as a function of time.

The total additional shift x f (t) at time t can be calculated from Eq.(2.48) by integrating the contribu-
tions from all times t′ with t0 < t′ < t,

x f (t) =
∫ t

t0

dt′∆x(t > t′) =
∫ t

t0

dt′G(t− t′)
f (t′)

m
. (2.49)

The position x(t) at time x now is given by the contribution xh(t) (force f = 0) plus the additional shift
x f (t) (force f 6= 0),

x(t) = xh(t) + x f (t) = xh(t) +
∫ t

t0

dt′G(t− t′)
f (t′)

m
. (2.50)

Putting everything together, we find a somewhat lengthy, but very convincing expression (we set the
initial time t0 = 0 for simplicity),

x(t) = x0

{
e−γt cos(ωt) +

δ

ω
e−γt sin(ωt)

}
+ v0e−γt sin(ωt)

ω

+
∫ t

0
dt′e−γ[t−t′ ] sin(ω[t− t′])

ω

f (t′)
m

. (2.51)
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Chapter 3

Functions of more than one variable

3.1 Functions of several variables

Definition: A real function f (x1, ..., xn) of n real variables x1,...,xn is a map

f : Rn → R, x := (x1, x2, ..., xn)→ f (x) = f (x1, ..., xn). (3.1)

In the following, we mainly discuss functions of two variables x1 and x2, i.e. the case n = 2. Such
functions can be represented by a three–dimensional surface plot, where the value z = f (x, y) at each
point (x, y) in the x–y plane is plotted in the z–direction over the x–y plane. Here are two examples:

Figure 3.1: Examples of functions f (x, y) of two variables x and y: Paraboloid f (x, y) = x2 + y2 (LEFT),
saddle f (x, y) = x2 − y2 (RIGHT).

The Paraboloid f (x, y) = x2 + y2

We can understand this graph as follows:
1. If we keep y fixed and change x, we have a parabola for each y, e.g.

f (x, 0) = x2

f (x,−1) = x2 + 1

f (x, 1) = x2 + 1

f (x, 2) = x2 + 4
...

23
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Figure 3.2: Paraboloid f (x, y) = x2 + y2.

If we keep x fixed and change y, we have a parabola for each x, e.g.

f (0, y) = y2

f (−1, y) = 1 + y2

f (1, y) = 1 + y2

f (3, y) = 9 + y2

...

These are cross–sections of the graph in x and y direction. It is important that you learn to visualise these
cross–sections in your mind.

2. If we keep the value of the function fixed, i.e. z = f (x, y) = z0 = const > 0, we find circles

z0 = f (x, y) = x2 + y2. (3.2)

Exercise: visualise these circles from the figure above. What are the radii of the circles for a given height
f (x, y) = z0?

The Saddle f (x, y) = x2 − y2

We can understand this graph as follows:
1. If we keep y fixed and change x, we have a parabola for each y, e.g.

f (x, 0) = x2

f (x,−1) = x2 − 1

f (x, 1) = x2 − 1

f (x, 2) = x2 − 4
...

These are parabolas bending upwards but with their origin shifted to negative values.
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Figure 3.3: Saddle f (x, y) = x2 − y2.

If we keep x fixed and change y, we have a parabola for each x, e.g.

f (0, y) = −y2

f (−1, y) = 1− y2

f (1, y) = 1− y2

f (3, y) = 9− y2

...

These are parabolas bending downwards but with their origin shifted to positive values. We can built up
the whole graph from these cross-sections. The interesting thing is that we understand the global shape
of the surface f (x, y), i.e. its saddle–shape, only form ‘glueing’ together all the cross–sections.

The most interesting points in both the paraboloid and the saddle are the extrema at (x, y) = (0, 0):
for the paraboloid, this is a global minimum, for the saddle this is neither a minimum (it is a minimum in
x–direction only) nor a maximum (it is a maximum in y–direction only): it is a saddle–point.

3.1.1 Symmetries

The Paraboloid f (x, y) = x2 + y2

We consider the circle of fixed radius r,

r2 = x2 + y2 (3.3)

in the x–y plane. For all points on this circle, the function f (x, y) = x2 + y2 has the same value f (x, y) = r2.
A rotation of a point (x, y) on this circle around the origin (x, y) = (0, 0) does not alter f (x, y). In fact,
if we rotate f (x, y) continuously around the z–axis, f (x, y) remains invariant. The function f (x, y) has a
continous rotation symmetry. Therefore, it is also called ‘rotational paraboloid’ sometimes. We can build
up the whole surface f (x, y) from rings with radius r stacked on top of each other in the z–direction.
Again, when dealing with functions of more than one variable, it is important that you develop this
geometric kind of thinking.

The function f (x, y) also has other symmetries: f (x, y) = f (−x, y) = f (x,−y) = f (−x,−y) (reflection
of one or two of its variables).

3.2 Partial Derivatives
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3.2.1 Reminder: Derivative of a function of one variable

The derivative f ′(x) of a function f (x) gives the slope of the function at x. It is defined as

d f (x)
dx

≡ f ′(x) := lim
h→0

f (x + h)− f (x)
h

. (3.4)

Change of height: the quantity

f ′(x)dx

gives the change of the height of the curve f (x) (measured from the x–axis) at the point x, if we move a
tiny step dx along the x–axis.

3.2.2 Derivatives for functions of two variables

For a function f (x, y) with two independent variables, in a certain point (x, y) we can define the slope in
either the x– or the y–direction. These two give rise to the partial derivatives

∂

∂x
f (x, y) := lim

h→0

f (x + h, y)− f (x, y)
h

∂

∂y
f (x, y) := lim

h→0

f (x, y + h)− f (x, y)
h

. (3.5)

Partial derivative ∂
∂x f (x, y0)

The geometrical meaning of this is a follows: we keep y = y0 constant and consider the surface f (x, y)
along the x–direction, i.e. the curve f (x, y0) on the surface that appears through the cross–section with
the plane y = y0 parallel to the x–z–plane. The partial derivative ∂

∂x f (x, y0) gives the slope of this curve
at x. In other words: the partial derivative ∂

∂x f (x, y) gives the slope of the surface at (x, y) in x–direction.
Change of height: the quantity

∂

∂x
f (x, y)dx

gives the change of the height of the surface f (x, y) (measured from the x–y–plane) at the point (x, y), if
we move a tiny step dx along the x–direction.

Partial derivative ∂
∂y f (x0, y)

The geometrical meaning of this is a follows: we keep x = x0 constant and consider the surface f (x, y)
along the y–direction, i.e. the curve f (x0, y) on the surface that appears through the cross–section with
the plane x = x0 parallel to the y–z–plane. The partial derivative ∂

∂y f (x0, y) gives the slope of this curve

at y. In other words: the partial derivative ∂
∂y f (x, y) gives the slope of the surface at (x, y) in y–direction.

Change of height: the quantity

∂

∂y
f (x, y)dy

gives the change of the height of the surface f (x, y) (measured from the x–y–plane) at the point (x, y), if
we move a tiny step dy along the y–direction.
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Total change of height (total differential)

The quantity

d f (x, y) :=
∂

∂x
f (x, y)dx +

∂

∂y
f (x, y)dy (3.6)

is called the total differential of f (x, y) at the point (x, y) and gives the total change of the height of the
surface f (x, y) (measured from the x–y–plane) at the point (x, y), if we move a tiny step dx along the
x–direction and a tiny step dy along the y–direction.

How to calculate partial derivatives

This is very simple:

• To calculate ∂
∂x f (x, y), we keep y fixed and differentiate f (x, y) with respect to x. In doing so, y is

regarded as a fixed parameter.

• To calculate ∂
∂y f (x, y), we keep x fixed and differentiate f (x, y) with respect to y. In doing so, x is

regarded as a fixed parameter.

Examples

f (x, y) = x2 + y2  
∂

∂x
f (x, y) = 2x,

∂

∂y
f (x, y) = 2y

f (x, y) = x2y3  
∂

∂x
f (x, y) = 2xy3,

∂

∂y
f (x, y) = x23y2.

f (x, y) = e−xy  
∂

∂x
f (x, y) = −ye−xy,

∂

∂y
f (x, y) = −xe−xy.

3.2.3 Higher Derivatives, Notation

Higher partial derivatives are easily defined: The second partial derivative ∂2

∂x2 f (x, y) is the partial deriva-
tive with respect to x of the partial derivative ∂

∂x f (x, y), etc. To simplify the notation, one often defines

fx ≡
∂

∂x
f (x, y), fxx ≡ ∂2

∂x2 f (x, y) :=
∂

∂x
∂

∂x
f (x, y)

fy ≡
∂

∂y
f (x, y), fyy ≡ ∂2

∂y2 f (x, y) :=
∂

∂y
∂

∂y
f (x, y)

fxy ≡ ∂2

∂x∂y
f (x, y) :=

∂

∂x
∂

∂y
f (x, y)

fyx ≡ ∂2

∂y∂x
f (x, y) :=

∂

∂y
∂

∂x
f (x, y). (3.7)

Examples of Higher Partial Derivatives

f (x, y) = x2 + y2  fx(x, y) = 2x, fy(x, y) = 2y
fxx(x, y) = fyy(x, y) = 2, fxy(x, y) = fyx(x, y) = 0.
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3.2.4 Minima, Maxima and Saddle points

Extrema (stationary points) occur when all partial derivatives are zero. Types: minima, maxima and
saddlepoints (minimum in one direction, maximum in another).

3.3 Curves on Surfaces

3.3.1 Parametric curves in the x–y–plane

Definition: A curve in the x–y–plane is a map

R→ R2, t→ x(t) := (x(t), y(t)) (3.8)

which associates with each values of the parameter t (‘time’ t) a point (x(t), y(t)) in the x–y–plane.

Examples

1. The circle around the origin,

(x(t), y(t)) = (r cos(t), r sin(t)). (3.9)

Check that x(t)2 + y(t)2 = r2 for all t.
2. The curve line

(x(t), y(t)) = (t2, t). (3.10)

Sketch this!

3.3.2 Parametric urves on Surfaces

Consider a function f (x, y), i.e. a surface z = f (x, y) above the x–y–plane. Consider a curve (x(t), y(t))
in the x–y–plane. This curve defines a corresponding curve

z(t) = f (x(t), y(t)) (3.11)

on the surface. Example: for f (x, y) = x2 + y2 and (x(t), y(t)) = (r cos(t), r sin(t)), z(t) = r2. The circle in
the x–y–plane corresponds to a ring hovering at a distance r2 above the plane, being part of the surface of
the paraboloid x2 + y2. Sketch the corresponding picture (lecture)!

3.3.3 Change of height along a Curve

Reminder: Total change of height (total differential)

d f (x, y) :=
∂

∂x
f (x, y)dx +

∂

∂y
f (x, y)dy

is called the total differential of f (x, y) at the point (x, y) and gives the total change of the height of the
surface f (x, y) (measured from the x–y–plane) at the point (x, y), if we move a tiny step dx along the
x–direction and a tiny step dy along the y–direction.

From this, we can calculate the change of the height of the curve z(t) = f (x(t), y(t)):

dz(t)
dt

=
d f (x(t), y(t))

dt
=

∂

∂x
f (x, y)

dx(t)
dt

+
∂

∂y
f (x, y)

dy(t)
dt

. (3.12)

This is a chain rule

d f (x(t), y(t))
dt

=
∂ f
∂x

dx
dt

+
∂ f
∂y

dy
dt

. (3.13)
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Example: f (x, y) = x2 + y2 and (x(t), y(t)) = (t2, t)

We have

dz(t)
dt

= =
∂

∂x
f (x, y)

dx(t)
dt

+
∂

∂y
f (x, y)

dy(t)
dt

= 2x(t) · 2t + 2y(t) · 1 = 4t3 + 2t.

We can check this by direct calculation, z(t) = t4 + t2  dz(t)/dt = 4t3 + 2t. The general formula,
however, makes it clear that there a two contributions to the change of the curve z(t) on the surface: 1.
the ‘geometric change’ (partial derivatives fx, fy) of the surface. 2. the ‘kinematic change’, i.e. the time
derivatives dx(t)/dt, dy(t)/dt that determine the speed by which we sweep along the curve z(t).

Example: f (x, y) = x2 − y2 and (x(t), y(t)) = (cos t, sin t)

dz(t)
dt

= =
∂

∂x
f (x, y)

dx(t)
dt

+
∂

∂y
f (x, y)

dy(t)
dt

= 2x(t) · (− sin(t))− 2y(t) · cos(t)

= −2 cos(t) sin(t)− 2 sin(t) cos(t) = −2 sin(2t).

Direct check with z(t) = cos2(t)− sin2(t) = cos(2t).

3.4 The Gradient

3.4.1 Definition of the Gradient

Definition: Let f (x, y) be a real function of two variables. The gradient grad f of f in the point (x0, y0) in
the x–y–plane is the two–component vector of the partial derivatives fx and fy of f ,

grad f (x0, y0) ≡ ∇ f (x0, y0) =
(

fx(x0, y0), fy(x0, y0)
)

. (3.14)

The symbol∇ is called ‘Nabla’–operator. Note: the gradient of f in the point (x0, y0) is a two–dimensional
vector in the x–y–plane attached to that point. The map (x, y) → ∇ f (x, y) defines a vector field, i.e. to
each point (vector) (x, y) in the x–y–plane, a vector ∇ f (x, y) is attached.

3.4.2 Examples

Paraboloid f (x, y) = x2 + y2

In this case,

∇ f (x, y) = (2x, 2y).

Sketch this vector field in the x–y–plane (solution is given in the lecture).

Hyperboloid f (x, y) = x2 − y2

In this case,

∇ f (x, y) = (2x,−2y).

Sketch this vector field in the x–y–plane (solution is given in the lecture).
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3.4.3 Gradient and Differential; Geometrical Meaning

Reminder: Total change of height (total differential)

d f (x, y) :=
∂

∂x
f (x, y)dx +

∂

∂y
f (x, y)dy

is called the total differential of f (x, y) at the point (x, y) and gives the total change of the height of the
surface f (x, y) (measured from the x–y–plane) at the point (x, y), if we move a tiny step dx along the
x–direction and a tiny step dy along the y–direction.

Consider now a certain point (x0, y0) in the x–y–plane, with the gradient ∇ f (x0, y0) of the function
f (x, y) attached. In that point, the total change of height of the function f (x, y) can be written as a scalar
product,

d f =
∂

∂x
f dx +

∂

∂y
f dy = ( fx, fy) · (dx, dy)

of the two vectors ( fx, fy) = ∇ f (≡ ∇ f (x0, y0)) and (dx, dy). We now change dx and dy slightly, thereby
changing the vector (dx, dy) of the differentials. Then, for a certain values of dx and dy, the vector (dx, dy)
becomes perpendicular to the gradient ( fx, fy), i.e. the scalar product d f = ∇ f · (dx, dy) vanishes. In this
direction (dx, dy), the height of the surface does not change, it determines the direction of an equipotential
line. Therefore, the gradient ∇ f (x0, y0) is perpendicular to the equipotential line through (x0, y0); it
determines the direction of the steepest increase of the function f (x, y).

Example: Paraboloid f (x, y) = x2 + y2

We have

∇ f (x, y) = (2x, 2y).

The equipotential lines are circles r2 = x2 + y2 in the x–y–plane. The gradient is perpendicular to these
circles. Picture in the lecture.



Chapter 4

Series and Limits

4.1 Finite and Infinite Series

4.1.1 Finite Series of Natural Numbers (Gauß)

n

∑
k=1

k = 1 + 2 + 3 + ... + n =
n(n + 1)

2
. (4.1)

First Proof (C. F. Gauß) for n = 100:
100

∑
k=1

k = (1 + 100) + (2 + 99) + (3 + 98) + ... + (50 + 51) = 50 · 101 = 5050. (4.2)

General proof by induction:
1. Induction Start (n = 1):

1

∑
k=1

k = 1 =
1(1 + 1)

2
 OK. (4.3)

2. Induction Step (n→ n + 1): Assume Eq. (4.1) is true for n, then show that it is also true for n + 1:

n+1

∑
k=1

k =
n

∑
k=1

k + (n + 1) =
n(n + 1)

2
+ (n + 1) =

(n + 1)(n + 2)
2

 OK. (4.4)

This can now be used to prove it is true for n + 2, etc.

4.1.2 Finite Geometric Progression

n

∑
k=0

xk =
1− xn+1

1− x
, x 6= 0. (4.5)

Proof: Write

Sn =
n

∑
k=0

xk = 1 + x + x2 + ... + xn

= 1 + x(1 + x + x2 + ... + xn−1 + xn)− xn+1

= 1 + xSn − xn+1  

Sn =
1− xn+1

1− x
. (4.6)

Alternative proof by induction: home exercise.
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4.1.3 Binomial

(x + y)n =
n

∑
k=0

(
n
k

)
xn−kyk. (4.7)

Here, we define the binomial coefficient(
n
k

)
=

n!
k!(n− k)!

=
n(n− 1) · ...(n− k + 1)

1 · 2 · ... · k . (4.8)

The proof of Eq.(4.7) goes again via induction n→ n + 1. Not shown here. Examples:

(x + y)2 = x2 + 2xy + y3

(x + y)3 = x3 + 3x2y + 3xy2 + y3. (4.9)

4.1.4 Infinite Series

Definition

A series

S :=
∞

∑
k=0

ak = a0 + a1 + a2 + ... = lim
n→∞

Sn, Sn :=
n

∑
k=0

ak (4.10)

is called infinite series. It is the limit of the sequence of finite series Sn when the upper limit n tends
toward infinity. (The objects Sn are also called “partial sums”.) In contrast to the finite series Sn, the
infinite series S can diverge. S is said to be convergent is Sn approaches a finite limit as n→ ∞.
Example 4.1:

Use a constant ak

ak = 1 
∞

∑
k=0

ak = 1 + 1 + 1 + 1 + .... (4.11)

is divergent because the partial sums Sn = n, which clearly diverge as n→ ∞.

Example 4.2:

The geometric series

∞

∑
k=0

xk =
1

1− x
, |x| < 1. (4.12)

learn this one by heart.
This series converges for arbitrary (real or complex) numbers x with |x| < 1. [Please sketch
the condition |z| < 1 for complex z as an an area in the complex plane.]

Proof of Eq. (4.33):

S =
∞

∑
k=0

xk = 1 + x + x2 + x3 + ... = 1 + x(1 + x + x2 + ...) = 1 + x · S 

S =
1

1− x
. (4.13)

The problem with infinite series is that often it is not easy to decide if or if not they converge,
e.g. for which values of x in the above example.

A necessary condition for convergence of S = ∑∞
k=0 ak is that ak → 0 as k→ ∞.
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A sufficient condition for convergence: is the ratio test

Ratio test: Consider the series S := ∑∞
k=0 ak and assume ak 6= 0 for all k > k0. Define the

ratio

R := lim
k→∞

∣∣∣∣ ak+1
ak

∣∣∣∣ 
R < 1 series is convergent
R > 1 series is divergent. (4.14)

For R = 1, the ratio test can’t decide whether the series is convergent or divergent.

4.2 Taylor–Series

One of the main motivations to investigate infinite series is the desired to write arbitrary functions f (x)
as polynomials of infinite degree, i.e.

f (x) = a0 + a1x + a2x2 + a3x4 + ...

=
∞

∑
k=0

akxk. (4.15)

For each fixed x, this is an infinite series of the form S := ∑∞
k=0 bk with bk := akxk. An important question

is, e.g., how to determine the coefficients ak for a given function f (x), and to decide for which values of x
the series for f (x) does converge.

4.2.1 The Exponential Function

We already know one example for such a series which is the exponential function

exp(x) =
∞

∑
n=0

xn

n!
(4.16)

You have to remember this formula throughout your whole life. This series converges for arbitrary
values of (complex or real) x since (ratio test!)

R := lim
n→∞

∣∣∣∣ xn+1/(n + 1)!
xn/n!

∣∣∣∣ = lim
n→∞

x
n + 1

= 0. (4.17)

By use of the this exponential series one defines the famous Euler number

e :=
∞

∑
n=0

1
n!

= exp(1). (4.18)

4.2.2 Power Series for sin(x) and cos(x)
We repeat our result for the series that define sin and cos:

sin(x) :=
∞

∑
n=0

(−1)nx2n+1

(2n + 1)!
= x− x3

3!
+

x5

5!
− x7

7!
+ ...

cos(x) :=
∞

∑
n=0

(−1)nx2n

(2n)!
= 1− x2

2!
+

x4

4!
− x6

6!
+ ... (4.19)
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4.2.3 General Case

Now we treat the case of an arbitrary function

f (x) = a0 + a1x + a2x2 + a3x4 + ... =
∞

∑
k=0

akxk. (4.20)

The above equation means that we try to represent the function by an ‘infinite’ polynomial. In the follow-
ing, we assume that all derivatives of f (x), i.e. f ′(x) =: f (1)(x), f ′′(x) =: f (2)(x), f ′′′(x) =: f (3)(x), ...
etc. exist. We write

f (x = 0) = a0 + a1x + a2x2 + a3x3 + ...
∣∣∣
x=0

= a0

f ′(x = 0) = a1 + 2a2x + 3a3x2 + 4a4x3 + ...
∣∣∣
x=0

= a1

f ′′(x = 0) = 2a2 + 2 · 3a3x + 3 · 4a4x2 + ...
∣∣∣
x=0

= 1 · 2a2

f (3)(x = 0) = 2 · 3a3 + 2 · 3 · 4a4x + ...|x=0 = 1 · 2 · 3a3

... = ...
f (n)(x = 0) = 1 · 2 · ... · n · an = n!an

 an =
f (n)(x = 0)

n!
. (4.21)

Collecting all terms, we find the

Taylor expansion of f (x) around x = 0,

f (x) =
f (x = 0)

0!
+

f ′(x = 0)
1!

x +
f ′′(x = 0)

2!
x2 + ... =

∞

∑
n=0

f (n)(x = 0)
n!

xn. (4.22)

We define the truncated Taylor series

fN(x) :=
N

∑
n=0

f (n)(x = 0)
n!

xn  f (x) = lim
N→∞

fN(x). (4.23)

The truncated Taylor series for finite N is often used as an approximation for the function f (x). For
larger and larger N, we expect that this approximation of the function f (x) by a polynomial of degree N
becomes better and better, if the series converges, of course. Let us look at an example to see how this
works:

4.2.4 Example: The Exponential Function exp(x)

We calculate the Taylor series of f (x) = exp(x) around x = 0. To do so, we have to calculate the deriva-
tives

f (0)(x = 0) ≡ f (x = 0) = ex|x=0 = 1

f (1)(x = 0) = ex|x=0 = 1

f (2)(x = 0) = ex|x=0 = 1
... ... (4.24)
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This is particularily simple because all the derivatives of ex are ex. This means that

f (x) = lim
N→∞

fN(x) = lim
N→∞

N

∑
n=0

f (n)(x = 0)
n!

xn

= lim
N→∞

N

∑
n=0

xn

n!
=

∞

∑
n=0

xn

n!
. (4.25)

We recognise that the Taylor expansion of f (x) = exp(x) just reproduces our old result, Eq. (4.16).

-3 -2 -1 0 1 2 3
x

0

5

10

15

20

f n(x
)

exp(x)
f
2
(x)

f
4
(x)

f
6
(x)

Figure 4.1:
Approximation of the function f (x) = exp(x) by the truncated Taylor Series fN(x), Eq. (4.25), for N =
2, 4, 6. For the interval x ∈ [−3, 3] shown here, the approximation of exp(x) by f6(x) is already very good.

We can apply the ratio test to the series for the exponential. WIth an = xn/n!, we find R = limn→∞ x/(n +
1) = 0 for every fixed x. The Taylor series for the exponent thus converges for all x.

4.3 Taylor–Expansion of Functions

4.3.1 Convergence: Expansion of f (x) = ln(1 + x)

The derivatives of this function are

f (x) = ln(1 + x) f (0) = ln(1) = 0

f ′(x) = (1 + x)−1

f ′′(x) = (−1)(1 + x)−2

f (3)(x) = 2(1 + x)−3

f (4)(x) = −6(1 + x)−4

... ...
f (n)(x) = (−1)n+1(n− 1)!(1 + x)−n  f (n)(x = 0) = (−1)n+1(n− 1)!. (4.26)

We use this to expand f (x) around x = 0,

ln(1 + x) =
∞

∑
n=0

f (n)(x = 0)
n!

xn =
∞

∑
n=1

(−1)n+1xn(n− 1)!
n!

=
∞

∑
n=1

(−1)n+1xn

n
. (4.27)
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Now we ask: for which values of x does this Taylor series actually converge? We use the ratio test and
write

∞

∑
n=1

(−1)n+1xn

n
=

∞

∑
n=1

an  an =
(−1)n+1xn

n

R := lim
n→∞

∣∣∣∣ an+1

an

∣∣∣∣ = lim
n→∞

n
n + 1

|x| = |x| . (4.28)

From Eq. (4.14), we recognise that the series

• converges for |x| < 1.

• diverges for |x| > 1.

At x = −1 we don’t expect the series to converge because ln(1 + (−1)) = ln(0) is undefined (minus
infinity). To decide what happens at x = 1, we have to invoke an additional convergence test:

Leibnitz’ test for alternating series: The alternating series

∞

∑
k=0

(−1)k|ak| (4.29)

converges, if |ak+1| < |ak| for all k, and limk→∞ ak = 0.

We apply this rule to the case x = 1 of our series Eq. (??) for ln(1 + x): At x = 1, |an+1| = 1/(n + 1) <
|an| = 1/n and limn→∞ |an| = 0, that means the Leibnitz’ test tells us that the series converges at x = 1.
The result gives us a famous formula for ln 2,

ln 2 =
∞

∑
n=1

(−1)n+1

n
= 1− 1

2
+

1
3
− 1

4
+

1
5
− ..., (4.30)

and we summarise our results for f (x) = ln(1 + x) as

ln(1 + x) =
∞

∑
n=1

(−1)n+1xn

n
, |x| < 1. (4.31)

We say that the radius of convergence R of this series is R = 1. For values of x beyond that radius, the
series diverges and does no longer represent the function ln(1 + x). In other words, the Taylor series
Eq. (4.31) is only useful for ‘small’ x.

4.3.2 Alternative way to generate a Taylor Series

Let us write ln(1 + x) in a ‘complicated way’, i.e. as an integral:

ln(1 + x) =
∫ x

0

dt
1 + t

. (4.32)

Now, we use our result for the geometric series, Eq.(4.33),
∞

∑
n=0

xn =
1

1− x
, |x| < 1. (4.33)

(‘LEARN THIS ONE BY HEART’) with t = −x, which leads to

ln(1 + x) =
∫ x

0
dt

1
1 + t

=
∫ x

0
dt

∞

∑
n=0

(−t)n

=
∫ x

0
dt(1− t + t2 − t3 + ...) (4.34)
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We integrate this term by term, which is easy,

ln(1 + x) =
∫ x

0
dt(1− t + t2 − t3 + ...) =

∞

∑
n=0

∫ x

0
dt(−t)n = x− x2

2
+

x3

3
− ... =

=
∞

∑
n=0

(−1)nxn+1

n + 1
=

∞

∑
n=1

(−1)n−1xn

n
, (4.35)

which is the same as Eq. (4.31)

4.3.3 Taylor expansion of f (x) around an arbitrary x = a

So far we have always expanded our functions f (x) in the vicinity of x = 0, i.e. ‘around’ x = 0:

Taylor expansion of f (x) around x = 0,

f (x) =
f (x = 0)

0!
+

f ′(x = 0)
1!

x +
f ′′(x = 0)

2!
x2 + ... =

∞

∑
n=0

f (n)(x = 0)
n!

xn. (4.36)

The Taylor expansion of a function f (x) near x = a is performed in an analogous way, but with x = 0
replaced by x = a, and x = x− 0 replaced by x− a:

Taylor expansion of f (x) around x = a,

f (x) =
f (a)
0!

+
f ′(a)

1!
(x− a) +

f ′′(a)
2!

(x− a)2 + ... =
∞

∑
n=0

f (n)(a)
n!

(x− a)n. (4.37)

In some books, the special case of a Taylor series around x = 0 is called Maclaurin Series .

4.4 Further Examples for Series and Limits

4.4.1 Newtonian Limit of Relativistic Energy

According to Einstein, the total energy of a particle of rest mass m0 and velocity v is

E =
m0c2√

1−
( v

c
)2

, (4.38)

where c is the speed of light on vacuum. We would like to find an approximation of this formula for small
velocities v � c, in order to compare to Newton’s expression for the kinetic energy, Ekin = (1/2)m0v2.
Defining β := v/c, we recognise that our mathematical task is to (x := β2)

Expand f (x) = 1√
1−x

around x = 0:

We write f (x) = (1− x)−1/2 and

f (0) = 1

f ′(0) = (−1)(−1/2)(1− x)−3/2
∣∣∣
x=0

= 1/2

f ′′(0) = (−1)(−1/2)(−1)(−3/2)(1− x)−3/2
∣∣∣
x=0

= 3/4

... (4.39)

With our
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Taylor expansion of f (x) around x = 0,

f (x) =
f (x = 0)

0!
+

f ′(x = 0)
1!

x +
f ′′(x = 0)

2!
x2 + ... =

∞

∑
n=0

f (n)(x = 0)
n!

xn, (4.40)

we find the first terms as

f (x) = 1 +
1
2

x +
3
8

x2 + ... (4.41)

(note that 2! = 2). Therefore, with x = β2 = (v/c)2, we obtain

E = m0c2
[

1 +
1
2

(v
c

)2
+

3
8

(v
c

)4
+ O

(v
c

)6
]

. (4.42)

Here, we introduced the O–symbol (speak ‘order of’), i.e. O(x)6 means ‘terms of order x6 or higher
powers’ like x7, x8 etc. This is a convenient way to express that in a Taylor expansion with the first few
terms written down as above, there are higher order terms to follow that one does not care to write down
explicitely here. These higher order terms in fact become smaller and smaller for |x| < 1.

We can take use of the O–symbol to write

E = m0c2 +
1
2

m0v2 + O
(v

c

)4
. (4.43)

This shows that the first term in the total energy is a velocity–independent rest energy of the particle,
and the second term is the lowest order approximation to its kinetic energy. The relativistic correction to the
kinetic energy if of order (v/c)4, i.e. very small for velocities small compared to the speed of light.

4.4.2 Limits

Expressions of the type ‘0/0’

Often we have to discuss and sketch functions like

f (x) =
sin(x)

x
(4.44)

with a seemingly ill-defined behaviour at x = 0. Direct substitution gives 0/0, which is indeed not well
defined. However, a closer look shows that we can make sense of the function even at x = 0: we expand
sin(x) by its Taylor series near x = 0, i.e.

f (x) =
sin(x)

x
=

x− x3

3! + O(x5)
x

= 1− x2

3!
+ O(x4). (4.45)

This means, that if x approaches x = 0 we have the finite value f (x = 0) = 1, i.e.

lim
x→0

f (x) = 1. (4.46)

The deviation from f (x = 0) = 1 close to x = 0 is described by the second term, −x2/6, i.e. a quadratic
decrease of the function for small values of x.



Chapter 5

Two–by–Two Matrices

5.1 Two-by-Two Matrices: Introduction

5.1.1 Linear Equations of Two Unknowns

Consider the system of linear equations for the two unknowns x and y,

ax + by = e
cx + dy = f , (5.1)

where a, b, c, d, e, f are constant numbers. This system can be easily solved: solve the first equation for y,

y =
e− ax

b
(5.2)

and insert it into the second equation,

cx + dy = cx +
de− adx

b
= f  (cb− ad)x = f b− de

x =
de− f b
ad− cb

y =
e− ax

b
=

e(ad− cb)− a(de− f b)
b(ad− cb)

=
a f − ec
ad− cb

. (5.3)

For this general solution for x and y to be valid, the denominator ad− cb apparently has to be different
from zero.

5.1.2 Two–by–Two Matrices: Definition

We write the two unknowns x and y as the components of a two–dimensional vector x,

x :=
(

x
y

)
. (5.4)

Then, we write the two constants e and f as the components of a two–dimensional vector v

v :=
(

e
f

)
. (5.5)

The two–by–two system of linear equations, Eq. (5.1), maps the vector x onto the vector v. We write this
in the following abstract form:

Ax = v⇔
(

a b
c d

)(
x
y

)
=
(

e
f

)
, (5.6)

39
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where we defined the two–by–two matrix

A :=
(

a b
c d

)
. (5.7)

A two–by–two matrix is a quadratic scheme which, upon operating on a vector x on its right, transforms
this vector into another vector v according to the rule

Ax =
(

a b
c d

)(
x
y

)
=
(

ax + by
cx + dy

)
= v. (5.8)

By comparison we recognise that this matrix equation, Ax = v, is equivalent to the system Eq.(5.1).

5.1.3 Linear Mappings and Matrix Operatings

A linear mapping A from R2 → R2 maps a vector x onto the vector Ax. The mapping is
represented by a two-by-two matrix A. The mapping must fulfill

x1 + x2 → A(x1 + x2) = Ax1 + Ax2, λx→ A(λx) = λAx, λ ∈ R.

The above can be generalised (trivially) to complex matrices; the mapping is then from C2 → C2, and λ
can also be complex

Examples

A =
(

1 3
2 −1

)
, x1 =

(
1
−2

)
, x2 =

(
1
1

)
, x1 + x2 =

(
2
−1

)
 Ax1 =

(
1 3
2 −1

)(
1
−2

)
=
(

1 · 1 + 3 · (−2)
2 · 1 + (−1) · (−2)

)
=
(
−5
4

)
Ax2 =

(
1 3
2 −1

)(
1
1

)
=
(

4
1

)
. (5.9)

We compare this to

A =
(

1 3
2 −1

)
, x1 =

(
1
−2

)
, x2 =

(
1
1

)
, x1 + x2 =

(
2
1

)
 A(x1 + x2) =

(
1 3
2 −1

)(
2
−1

)
=
(
−1
5

)
=
(
−5
4

)
+
(

4
1

)
= Ax1 + Ax2  OK.

5.2 Two–by–Two Matrices: Linear Mappings

The determinant det(A) of a two–by–two matrix A is defined as

det
(

a b
c d

)
≡
∣∣∣∣ a b

c d

∣∣∣∣ := ad− cb.

5.2.1 Specific Linear Mappings 1: the Unit Matrix

This is the trivial mapping represented by the unit or identity matrix, I,

I =
(

1 0
0 1

)
. (5.10)

We have det(I) = 1. Check that Ix = x for any vector x.



5.2. TWO–BY–TWO MATRICES: LINEAR MAPPINGS 41

5.2.2 Specific Linear Mappings 2: Stretching and Shrinking

These are linear mappings A represented by the multiples of the unit matrix, where c is a real number
such that

A =
(

c 0
0 c

)
. (5.11)

We have det(A) = c2 > 1. Check that in this case Ax = cx for any vector x.

5.2.3 Specific Linear Mappings 3: Projections

These are linear mappings A such as

A =
(

1 0
0 0

)
. (5.12)

We have det(A) = 0. Check that in this case, for any vector x = (x, y), Ax = (x, 0): the vector is projected
onto the x-axis.

5.2.4 Specific Linear Mappings 4: Rotations

These are mappings R(θ) that rotate vectors around the origin by an angle θ,

R(θ) =
(

cos θ − sin θ
sin θ cos θ

)
. (5.13)

In this case, det(R(θ)) = cos2 θ − (− sin2 θ) = 1. A vector x = (x, y) is rotated into

R(θ)x =
(

cos θ − sin θ
sin θ cos θ

)(
x
y

)
=
(

x cos θ − y sin θ
x sin θ + y cos θ

)
. (5.14)

Examples for rotations are(
cos θ − sin θ
sin θ cos θ

)(
1
0

)
=
(

cos θ
sin θ

)
,
(

cos θ − sin θ
sin θ cos θ

)(
0
1

)
=
(
− sin θ
cos θ

)
. (5.15)

Special Rotations: θ = 0

In this case,

R(θ = 0) =
(

1 0
0 1

)
= I (unit matrix). (5.16)

Special Rotations: θ = π
2

In this case,

R
(

θ =
π

2

)
=
(

0 −1
1 0

)
= −iσy (−i times Pauli Matrix σy). (5.17)
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5.2.5 Specific Linear Mappings 5: Reflections

These are mappings S(θ) that reflect a vectors at a fixed axis:

S(θ) =
(

cos θ sin θ
sin θ − cos θ

)
. (5.18)

In this case, det(S(θ)) = − cos2 θ − sin2 θ = −1. A vector x = (x, y) is transformed into

S(θ)x =
(

cos θ sin θ
sin θ − cos θ

)(
x
y

)
=
(

x cos θ + y sin θ
x sin θ − y cos θ

)
. (5.19)

Examples:(
cos θ sin θ
sin θ − cos θ

)(
cos 1

2 θ

sin 1
2 θ

)
=
(

cos 1
2 θ cos θ + sin 1

2 θ sin θ

cos 1
2 θ sin θ − sin 1

2 θ cos θ

)
=
(

cos 1
2 θ

sin 1
2 θ

)
, (5.20)

where we have a formula for trigonometric functions (CHECK). Furthermore, we have(
cos θ sin θ
sin θ − cos θ

)(
1
0

)
=
(

cos θ
sin θ

)
,
(

cos θ sin θ
sin θ − cos θ

)(
0
1

)
=
(

sin θ
− cos θ

)
. (5.21)

Sketch this in the x-y-plane (lecture). We recognise that S(θ) defines a reflection at the axis defined by the
direction of the vector (cos 1

2 θ, sin 1
2 θ)

Special Reflection: θ = 0

In this case,

S(θ = 0) =
(

1 0
0 −1

)
= σz (Pauli Matrix σz). (5.22)

Special Reflection: θ = π
2

In this case,

S
(

θ =
π

2

)
=
(

0 1
1 0

)
= σx (Pauli Matrix σx). (5.23)

5.3 Two–by–Two Matrices: Index Notation and Multiplication

5.3.1 Basis Vectors and Index Notation

Vectors

The vectors e1 =
(

1
0

)
, e2 =

(
0
1

)
are called basis vectors of R2.

Any arbitrary vector a ∈ R2 is written as a linear combination

a = a1e1 + a2e2 =
2

∑
i=1

aiei. (5.24)

In this representation, sometimes Einstein’s summation convention is used: We write a = ∑2
i=1 aiei =

aiei, omitting the sum symbol in order to simplify the notation. The sum is automatically carried out over
repeated indices. Here, the index is i.
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Matrices

The element Aij of a matrix A is the entry in its i-th row and its j-th column. For

two-by-two matrices, this reads
(

A11 A12
A21 A22

)
.

Note: be very careful not to mix up the row and the column index!

Matrix operating on vector

The result of a linear mapping x→ y = Ax can be written in index form, too:

x =
(

x1
x2

)
→ Ax = y =

(
y1
y2

)
←→ yi =

2

∑
j=1

Aijxj. (5.25)

This means that the first and second components, y1 and y2, of y = Ax are given by

y1 =
2

∑
j=1

A1jxj, y2 =
2

∑
j=1

A2jxj. (5.26)

Note that the index j runs over the columns of the matrix A.

5.3.2 Multiplication of a Matrix with a Scalar

This is simple,

λ

(
a b
c d

)
=
(

λa λb
λc λd

)
. (5.27)

5.3.3 Matrix Multiplication: Definition

A matrix A moves a vector x into a new vector y = Ax. This new vector can again be transformed into
another vector y′ by acting with another matrix B on it: y′ = By = BAx. The combined operation C = BA
transforms the original vector x into y′ in one single step. This matrix product is calculated according to

B =
(

a2 b2
c2 d2

)
, A =

(
a1 b1
c1 d1

)
 BA =

(
a2a1 + b2c1 a2b1 + b2d1
c2a1 + d2c1 c2b1 + d2d1

)
. (5.28)

In general, the matrix product does not commmute, i.e.,

AB 6= BA. (5.29)

This means that in contrast to real or complex numbers, the result of a multiplication of two matrices A
and B depends on the order of A and B.

The commutator [A, B] of two matrices A and B is defined as [A, B] = AB− BA.
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The commutator plays a central role in quantum mechanics, where classical variables like position
x and momentum p are replaced by operators(matrices) which in general do not commute, i.e., their
commutator is non–zero.
Example:

σz =
(

1 0
0 −1

)
σx =

(
0 1
1 0

)
(5.30)

σzσx =
(

0 1
−1 0

)
, σxσz =

(
0 −1
1 0

)
6= σzσx, [σz, σx] = 2

(
0 1
−1 0

)
.

5.3.4 Matrix Multiplication: Index Notation

The abstract way to write a matrix multiplication with indices:

C = BA Cij =
2

∑
k=1

Bik Akj. (= Bik Akj in the summation convention). (5.31)

To get the element in the ith row and jth column of the product BA, take the scalar product of the ith
row-vector of B with the j-th column vector of A. This looks complicated but it is not, it is just another
formulation of our definition Eq.(5.28).

5.4 Inverse of a Matrix

5.4.1 Motivation

Solving the linear two–by–two system Eq. (5.1) for the components x, y of the vector x, is equivalent to
the matrix equation

Ax =
(

a b
c d

)(
x
y

)
=
(

ax + by
cx + dy

)
= v =

(
e
f

)
. (5.32)

We recognise that in order to explicitely solving this for x, we have to invert the operation A.

5.4.2 Definition and Theorem

The inverse A−1 of a two–by–two matrix A is defined as the matrix fulfilling

A−1 A = AA−1 = I, I =
(

1 0
0 1

)

The determinant det(A) of a two–by–two matrix A is defined as

det
(

a b
c d

)
≡
∣∣∣∣ a b

c d

∣∣∣∣ := ad− cb.

Theorem Consider the two–by–two matrix

A =
(

a b
c d

)
. (5.33)
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If the determinant of A is non–zero, i.e. det(A) = ad− cb 6= 0, the inverse of A exists and is given by

A−1 =
1

ad− cb

(
d −b
−c a

)
≡
( d

ad−cb
−b

ad−cb−c
ad−cb

a
ad−cb

)
. (5.34)

For the proof of this, we just multiply A with A−1 and A−1 with A:

AA−1 =
(

a b
c d

)
1

ad− cb

(
d −b
−c a

)
=

1
ad− cb

(
ad− bc −ab + ba
cd− dc −cb + da

)
=
(

1 0
0 1

)
. (5.35)

Exercise: Check the same for A−1 A.

Examples

A =
(

1 3
2 −1

)
 det(A) = −1− 6 6= 0, A−1 =

1
−7

(
−1 −3
−2 1

)
=
( 1

7
3
7

2
7

−1
7

)
A =

(
3 6
2 4

)
 det(A) = 3 · 4− 2 · 6 = 0 A−1does not exist.

Solving the Linear Equations (5.1)

We are now in a position to solve Eq. (5.1) by the inverse of a matrix:

Ax = v⇔ A−1 Ax = A−1v⇔ x = A−1v

 
(

x
y

)
=

1
ad− cb

(
d −b
−c a

)(
e
f

)
=

(
de−b f
ad−bc
−ce+a f
ad−bc

)
. (5.36)

5.5 Eigenvalues and eigenvectors

In understanding the nature of a matrix (or really the linear transformation represented by it) we often
would like to understand those vectors that are transformed into themselves, i.e., where

Ae = λe, (λ is a constant). (5.37)

This equation is called the “eigenvalue problem”; λ is called an eigenvalue and e an eigenvector.
The question is now, obviously, how to determine λ and e. By using a simple trick, we can solve for λ

without having to know e. To this end we write

λx = λIx =
(

λ 0
0 λ

)
x,

and we can thus rewrite the eigenvalue problem as

(A− λI)x = 0. (5.38)

We have argued in the previous section that this has only the trivial solution if det(A − λI) 6= 0, i.e.,
x = 0. In order to avoid this we must require

det(A− λI) = 0 . (5.39)

For a two-by-two matrix this is a simple quadratic equation.
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Example 5.1:

Find the eigenvalues and eigenvectors of A =
(

1 2
2 1

)
.

Solution:

det(A− λI) =
∣∣∣∣ 1− λ 2

2 1− λ

∣∣∣∣
= (1− λ)2 − 4 = 0

Solutions are λ = 1± 2 = −1, 3.

Now determine the eigenvalues by solving (A− λI)e = 0. For λ1 = −1 we find(
2 2
2 2

)(
e1
e2

)
= 0

and thus e1 = −e2, and e(1) = c
(

1
1

)
. The arbitrary constant can be chosen at will. Some

standard choices are 1 (simple), 1/
√

2 (length 1), etc.

The same algebra for the other eigenvalue leads to e(2) = d
(

1
−1

)
.

If we rewrite (
x
y

)
= (x + y)/2

(
1
1

)
+ (x− y)/2

(
1
−1

)
,

we can easily understand the importantce of the eigenvectors:

A
(

x
y

)
= 3(x + y)/2

(
1
1

)
− (x− y)/2

(
1
−1

)
.

Thus the component parallel to (1, 1) is stretches by a factor of 3, and the component parallel
to (−1, 1) is inverted (multiplied by −1).

5.5.1 A physics example

The most important physical example of the role of the eigenvalue problem can be found in the case of
coupled oscillators. Consider Fig. 5.1. There we show the case of two masses, coupled by three springs.
We assume that x1 and x2 are the distances of the masses from the equilibrium position. At that point we
assume the strings are untentioned (neither stretched nor compressed).

The equations of motion take a simple form

m1 ẍ1 = −k1x1 + k2(x2 − x1) = −(k1 + k2)x1 + k2x2

m2 ẍ2 = −k3x2 − k2(x2 − x1) = −(k3 + k2)x2 + k2x1

We now take the masses equal (m1 = m2 = m), and all the spring constants equal as well (k1 = k2 = k3 =
mω2. We then find that

ẍ = ω2
(
−2 1
1 −2

)
x

This equation can now be solved by writing the standard exponential form, x = eezt. We then get

z2e = ω2
(
−2 1
1 −2

)
e
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Figure 5.1: Two coupled oscillators.

Which is an eigenvalue problem. Write z2 = ω2λ, and we find that λ = −1,−3. Thus z = ±iω,±i
√

3ω.
The eigenvectors for these two eigenvalues are (1, 1) and (1,−1), respectively.

Thus, in all its generality, we find using superposition that

x =
(

1
1

)
(A cos(ωt) + B sin(ωt)) +

(
1
−1

)
(C cos(

√
3ωt) + D sin(

√
3ωt)). (5.40)

This general motion thus consists of the superposition of motion of the two masses in phase (x1 = x2,
with frequency ω) and one maximally out of phase (x1 = −x1, with frequency

√
3ω).
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