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Chapter 1

Introduction

In this course I shall discuss nuclear and particle physics on a somewhat phenomenological level. The
mathematical sophistication shall be rather limited, with an emphasis on the physics and on symmetry
aspects.
Course text:
W.E. Burcham and M. Jobes, Nuclear and Particle Physics, Addison Wesley Longman Ltd, Harlow, 1995.

Supplementary references

1. B.R. Martin and G. Shaw, Particle Physics, John Wiley and sons, Chicester, 1996. A solid book on
particle physics, slightly more advanced than this course.

2. G.D. Coughlan and J.E. Dodd, The ideas of particle physics, Cambridge University Press, 1991. A more
hand waving but more exciting introduction to particle physics. Reasonably up to date.

3. N.G. Cooper and G.B. West (eds.), Particle Physics: A Los Alamos Primer, Cambridge University Press,
1988. A bit less up to date, but very exciting and challenging book.

4. R. C. Fernow, Introduction to experimental Particle Physics, Cambridge University Press. 1986. A good
source for experimental techniques and technology. A bit too advanced for the course.

5. F. Halzen and A.D. Martin, Quarks and Leptons: An introductory Course in particle physics, John Wiley
and Sons, New York, 1984. A graduate level text book.

6. F.E. Close, An introduction to Quarks and Partons, Academic Press, London, 1979. Another highly
recommendable graduate text.

7. The particle adventure: . A very nice–but slightly low level–introduction to particle physics.
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4 CHAPTER 2. A HISTORY OF PARTICLE PHYSICS

2.1 Nobel prices in particle physics

1903 BECQUEREL, ANTOINE HENRI, France,
École Polytechnique, Paris, b. 1852, d. 1908:

”in recognition of the extraordinary services
he has rendered by his discovery of sponta-
neous radioactivity”;

CURIE, PIERRE, France, cole municipale de
physique et de chimie industrielles, (Munic-
ipal School of Industrial Physics and Chem-
istry), Paris, b. 1859, d. 1906; and his
wife CURIE, MARIE, née SKLODOWSKA,
France, b. 1867 (in Warsaw, Poland), d. 1934:

”in recognition of the extraordinary services
they have rendered by their joint researches
on the radiation phenomena discovered by
Professor Henri Becquerel”

1922 BOHR, NIELS, Denmark, Copenhagen Uni-
versity, b. 1885, d. 1962:

”for his services in the investigation of the
structure of atoms and of the radiation ema-
nating from them”

1927 COMPTON, ARTHUR HOLLY, U.S.A., Uni-
versity of Chicago b. 1892, d. 1962:

”for his discovery of the effect named after
him”;

and WILSON, CHARLES THOMSON REES,
Great Britain, Cambridge University, b. 1869
(in Glencorse, Scotland), d. 1959:

”for his method of making the paths of elec-
trically charged particles visible by conden-
sation of vapour”

1932 HEISENBERG, WERNER, Germany, Leipzig
University, b. 1901, d. 1976:

”for the creation of quantum mechanics, the
application of which has, inter alia, led to the
discovery of the allotropic forms of hydro-
gen”

SCHRÖDINGER, ERWIN, Austria, Berlin
University, Germany, b. 1887, d. 1961; and
DIRAC, PAUL ADRIEN MAURICE, Great
Britain, Cambridge University, b. 1902, d.
1984:

”for the discovery of new productive forms
of atomic theory”

1935 CHADWICK, Sir JAMES, Great Britain, Liv-
erpool University, b. 1891, d. 1974:

”for the discovery of the neutron”

1936 HESS, VICTOR FRANZ, Austria, Innsbruck
University, b. 1883, d. 1964:

”for his discovery of cosmic radiation”; and

ANDERSON, CARL DAVID, U.S.A., Cal-
ifornia Institute of Technology, Pasadena,
CA, b. 1905, d. 1991:

”for his discovery of the positron”

1938 FERMI, ENRICO, Italy, Rome University, b.
1901, d. 1954:

”for his demonstrations of the existence of
new radioactive elements produced by neu-
tron irradiation, and for his related discov-
ery of nuclear reactions brought about by
slow neutrons”

1939 LAWRENCE, ERNEST ORLANDO, U.S.A.,
University of California, Berkeley, CA, b.
1901, d. 1958:

”for the invention and development of the
cyclotron and for results obtained with it, es-
pecially with regard to artificial radioactive
elements”

1943 STERN, OTTO, U.S.A., Carnegie Institute of
Technology, Pittsburg, PA, b. 1888 (in Sorau,
then Germany), d. 1969:

”for his contribution to the development of
the molecular ray method and his discovery
of the magnetic moment of the proton”
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1944 RABI, ISIDOR ISAAC, U.S.A., Columbia
University, New York, NY, b. 1898, (in Ry-
manow, then Austria-Hungary) d. 1988:

”for his resonance method for recording the
magnetic properties of atomic nuclei”

1945 PAULI, WOLFGANG, Austria, Princeton
University, NJ, U.S.A., b. 1900, d. 1958:

”for the discovery of the Exclusion Principle,
also called the Pauli Principle”

1948 BLACKETT, Lord PATRICK MAYNARD
STUART, Great Britain, Victoria University,
Manchester, b. 1897, d. 1974:

”for his development of the Wilson cloud
chamber method, and his discoveries there-
with in the fields of nuclear physics and cos-
mic radiation”

1949 YUKAWA, HIDEKI, Japan, Kyoto Imperial
University and Columbia University, New
York, NY, U.S.A., b. 1907, d. 1981:

”for his prediction of the existence of mesons
on the basis of theoretical work on nuclear
forces”

1950 POWELL, CECIL FRANK, Great Britain,
Bristol University, b. 1903, d. 1969:

”for his development of the photographic
method of studying nuclear processes and
his discoveries regarding mesons made with
this method”

1951 COCKCROFT, Sir JOHN DOUGLAS, Great
Britain, Atomic Energy Research Establish-
ment, Harwell, Didcot, Berks., b. 1897,
d. 1967; and WALTON, ERNEST THOMAS
SINTON, Ireland, Dublin University, b.
1903, d. 1995:

”for their pioneer work on the transmuta-
tion of atomic nuclei by artificially acceler-
ated atomic particles”

1955 LAMB, WILLIS EUGENE, U.S.A., Stanford
University, Stanford, CA, b. 1913:

”for his discoveries concerning the fine
structure of the hydrogen spectrum”; and

KUSCH, POLYKARP, U.S.A., Columbia Uni-
versity, New York, NY, b. 1911 (in Blanken-
burg, then Germany), d. 1993:

”for his precision determination of the mag-
netic moment of the electron”

1957 YANG, CHEN NING, China, Institute for
Advanced Study, Princeton, NJ, U.S.A.,
b. 1922; and LEE, TSUNG-DAO, China,
Columbia University, New York, NY, U.S.A.,
b. 1926:

”for their penetrating investigation of the so-
called parity laws which has led to impor-
tant discoveries regarding the elementary
particles”

1959 SEGRÉ, EMILIO GINO, U.S.A., University
of California, Berkeley, CA, b. 1905 (in
Tivoli, Italy), d. 1989; and CHAMBER-
LAIN, OWEN, U.S.A., University of Califor-
nia, Berkeley, CA, b. 1920:

”for their discovery of the antiproton”

1960 GLASER, DONALD A., U.S.A., University
of California, Berkeley, CA, b. 1926:

”for the invention of the bubble chamber”

1961 HOFSTADTER, ROBERT, U.S.A., Stanford
University, Stanford, CA, b. 1915, d. 1990:

”for his pioneering studies of electron scat-
tering in atomic nuclei and for his thereby
achieved discoveries concerning the stucture
of the nucleons”; and

MÖSSBAUER, RUDOLF LUDWIG, Ger-
many, Technische Hochschule, Munich, and
California Institute of Technology, Pasadena,
CA, U.S.A., b. 1929:

”for his researches concerning the resonance
absorption of gamma radiation and his dis-
covery in this connection of the effect which
bears his name”

1963 WIGNER, EUGENE P., U.S.A., Princeton
University, Princeton, NJ, b. 1902 (in Bu-
dapest, Hungary), d. 1995:

”for his contributions to the theory of the
atomic nucleus and the elementary particles,
particularly through the discovery and ap-
plication of fundamental symmetry princi-
ples”;

GOEPPERT-MAYER, MARIA, U.S.A., Uni-
versity of California, La Jolla, CA, b. 1906
(in Kattowitz, then Germany), d. 1972; and
JENSEN, J. HANS D., Germany, University
of Heidelberg, b. 1907, d. 1973:

”for their discoveries concerning nuclear
shell structure”
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1965 TOMONAGA, SIN-ITIRO, Japan, Tokyo,
University of Education, Tokyo, b. 1906, d.
1979;
SCHWINGER, JULIAN, U.S.A., Harvard
University, Cambridge, MA, b. 1918, d.
1994; and
FEYNMAN, RICHARD P., U.S.A., Califor-
nia Institute of Technology, Pasadena, CA, b.
1918, d. 1988:

”for their fundamental work in quantum
electrodynamics, with deep-ploughing con-
sequences for the physics of elementary par-
ticles”

1967 BETHE, HANS ALBRECHT, U.S.A., Cornell
University, Ithaca, NY, b. 1906 (in Stras-
bourg, then Germany):

”for his contributions to the theory of nu-
clear reactions, especially his discoveries
concerning the energy production in stars”

1968 ALVAREZ, LUIS W., U.S.A., University of
California, Berkeley, CA, b. 1911, d. 1988:

”for his decisive contributions to elementary
particle physics, in particular the discovery
of a large number of resonance states, made
possible through his development of the
technique of using hydrogen bubble cham-
ber and data analysis”

1969 GELL-MANN, MURRAY, U.S.A., California
Institute of Technology, Pasadena, CA, b.
1929:

”for his contributions and discoveries con-
cerning the classification of elementary par-
ticles and their interactions”

1975 BOHR, AAGE, Denmark, Niels Bohr Insti-
tute, Copenhagen, b. 1922;
MOTTELSON, BEN, Denmark, Nordita,
Copenhagen, b. 1926 (in Chicago, U.S.A.);
and
RAINWATER, JAMES, U.S.A., Columbia
University, New York, NY, b. 1917, d. 1986:

”for the discovery of the connection be-
tween collective motion and particle motion
in atomic nuclei and the development of the
theory of the structure of the atomic nucleus
based on this connection”

1976 RICHTER, BURTON, U.S.A., Stanford Lin-
ear Accelerator Center, Stanford, CA, b.
1931;
TING, SAMUEL C. C., U.S.A., Mas-
sachusetts Institute of Technology (MIT),
Cambridge, MA, (European Center for
Nuclear Research, Geneva, Switzerland), b.
1936:

”for their pioneering work in the discov-
ery of a heavy elementary particle of a new
kind”

1979 GLASHOW, SHELDON L., U.S.A., Lyman
Laboratory, Harvard University, Cambridge,
MA, b. 1932;
SALAM, ABDUS, Pakistan, International
Centre for Theoretical Physics, Trieste, and
Imperial College of Science and Technology,
London, Great Britain, b. 1926, d. 1996; and
WEINBERG, STEVEN, U.S.A., Harvard Uni-
versity, Cambridge, MA, b. 1933:

”for their contributions to the theory of the
unified weak and electromagnetic interac-
tion between elementary particles, including
inter alia the prediction of the weak neutral
current”

1980 CRONIN, JAMES, W., U.S.A., University of
Chicago, Chicago, IL, b. 1931; and
FITCH, VAL L., U.S.A., Princeton University,
Princeton, NJ, b. 1923:

”for the discovery of violations of funda-
mental symmetry principles in the decay of
neutral K-mesons”

1983 CHANDRASEKHAR, SUBRAMANYAN,
U.S.A., University of Chicago, Chicago, IL,
b. 1910 (in Lahore, India), d. 1995:

”for his theoretical studies of the physical
processes of importance to the structure and
evolution of the stars”

FOWLER, WILLIAM A., U.S.A., California
Institute of Technology, Pasadena, CA, b.
1911, d. 1995:

”for his theoretical and experimental stud-
ies of the nuclear reactions of importance in
the formation of the chemical elements in the
universe”
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1984 RUBBIA, CARLO, Italy, CERN, Geneva,
Switzerland, b. 1934; and
VAN DER MEER, SIMON, the Netherlands,
CERN, Geneva, Switzerland, b. 1925:

”for their decisive contributions to the large
project, which led to the discovery of the
field particles W and Z, communicators of
weak interaction”

1988 LEDERMAN, LEON M., U.S.A., Fermi Na-
tional Accelerator Laboratory, Batavia, IL, b.
1922;
SCHWARTZ, MELVIN, U.S.A., Digital Path-
ways, Inc., Mountain View, CA, b. 1932; and
STEINBERGER, JACK, U.S.A., CERN,
Geneva, Switzerland, b. 1921 (in Bad
Kissingen, FRG):

”for the neutrino beam method and the
demonstration of the doublet structure of the
leptons through the discovery of the muon
neutrino”

1990 FRIEDMAN, JEROME I., U.S.A., Mas-
sachusetts Institute of Technology, Cam-
bridge, MA, b. 1930;
KENDALL, HENRY W., U.S.A., Mas-
sachusetts Institute of Technology, Cam-
bridge, MA, b. 1926; and
TAYLOR, RICHARD E., Canada, Stanford
University, Stanford, CA, U.S.A., b. 1929:

”for their pioneering investigations concern-
ing deep inelastic scattering of electrons on
protons and bound neutrons, which have
been of essential importance for the develop-
ment of the quark model in particle physics”

1992 CHARPAK, GEORGES, France, École
Supèrieure de Physique et Chimie, Paris
and CERN, Geneva, Switzerland, b. 1924 (
in Poland):

”for his invention and development of parti-
cle detectors, in particular the multiwire pro-
portional chamber”

1995 ”for pioneering experimental contributions
to lepton physics”

PERL, MARTIN L., U.S.A., Stanford Univer-
sity, Stanford, CA, U.S.A., b. 1927,

”for the discovery of the tau lepton”

REINES, FREDERICK, U.S.A., University of
California at Irvine, Irvine, CA, U.S.A., b.
1918, d. 1998:

”for the detection of the neutrino”
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2.2 A time line

Particle Physics Time line
Year Experiment Theory
1927 β decay discovered
1928 Paul Dirac: Wave equation for electron
1930 Wolfgang Pauli suggests existence of neu-

trino
1931 Positron discovered
1931 Paul Dirac realises that positrons are part

of his equation
1931 Chadwick discovers neutron
1933/4 Fermi introduces theory for β decay
1933/4 Hideki Yukawa discusses nuclear binding

in terms of pions
1937 µ discovered in cosmic rays
1938 Baryon number conservation
1946 µ is not Yukawa’s particle
1947 π+ discovered in cosmic rays
1946-50 Tomonaga, Schwinger and Feynman de-

velop QED
1948 First artificial π’s
1949 K+ discovered
1950 π0 → γγ

1951 ”V-particles” Λ0 and K0

1952 ∆: excited state of nucleon
1954 Yang and Mills: Gauge theories
1956 Lee and Yang: Weak force might break

parity!
1956 CS Wu and Ambler: Yes it does.
1961 Eightfold way as organising principle
1962 νµ and νe
1964 Quarks (Gell-man and Zweig) u, d, s
1964 Fourth quark suggested (c)
1965 Colour charge all particles are colour neu-

tral!
1967 Glashow-Salam-Weinberg unification of

electromagnetic and weak interactions.
Predict Higgs boson.

1968-69 DIS at SLAC constituents of proton seen!
1973 QCD as the theory of coloured interac-

tions. Gluons.
1973 Asymptotic freedom
1974 J/ψ (cc̄) meson
1976 D0 meson (ūc) confirms theory.
1976 τ lepton!
1977 b (bottom quark). Where is top?
1978 Parity violating neutral weak interaction

seen
1979 Gluon signature at PETRA
1983 W± and Z0 seen at CERN
1989 SLAC suggests only three generations of

(light!) neutrinos
1995 t (top) at 175 GeV mass
1997 New physics at HERA (200 GeV)
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2.3 Earliest stages

The early part of the 20th century saw the development of quantum theory and nuclear physics, of which
particle physics detached itself around 1950. By the late 1920’s one knew about the existence of the atomic
nucleus, the electron and the proton. I shall start this history in 1927, the year in which the new quantum
theory was introduced. In that year β decay was discovered as well: Some elements emit electrons with a
continuous spectrum of energy. Energy conservation doesn’t allow for this possibility (nuclear levels are
discrete!). This led to the realisation, in 1929, by Wolfgang Pauli that one needs an additional particle to
carry away the remaining energy and momentum. This was called a neutrino (small neutron) by Fermi,
who also developed the first theoretical model of the process in 1933 for the decay of the neutron

n→p + e− + ν̄e (2.1)

which had been discovered in 1931.
In 1928 Paul Dirac combined quantum mechanics and relativity in an equation for the electron. This

equation had some more solutions than required, which were not well understood. Only in 1931 Dirac
realised that these solutions are physical: they describe the positron, a positively charged electron, which
is the antiparticle of the electron. This particle was discovered in the same year, and I would say that
particle physics starts there.

2.4 fission and fusion

Fission of radioactive elements was already well established in the early part of the century, and activation
by neutrons, to generate more unstable isotopes, was investigated before fission of natural isotopes was
seen. The inverse process, fusion, was understood somewhat later, and Niels Bohr developed a model
describing the nucleus as a fluid drop. This model - the collective model - was further developed by
his son Aage Bohr and Ben Mottelson. A very different model of the nucleus, the shell model, was
designed by Maria Goeppert-Mayer and Hans Jensen in 1952, concentrating on individual nucleons. The
dichotomy between a description as individual particles and as a collective whole characterises much of
“low-energy” nuclear physics.

2.5 Low-energy nuclear physics

The field of low-energy nuclear physics, which concentrates mainly on structure of and low-energy re-
action on nuclei, has become one of the smaller parts of nuclear physics (apart from in the UK). Notable
results have included better understanding of the nuclear medium, high-spin physics, super deforma-
tion and halo nuclei. Current experimental interest is in those nuclei near the “drip lines” which are of
astrophysical importance, as well as of other interest.

2.6 Medium-energy nuclear physics

Medium energy nuclear physics is interested in the response of a nucleus to probes at such energies that
we can no longer consider nucleons to be elementary particles. Most modern experiments are done by
electron scattering, and concentrate on the role of QCD (see below) in nuclei, the structure of mesons in
nuclei and other complicated questions.

2.7 high-energy nuclear physics

This is not a very well-defined field, since particle physicists are also working here. It is mainly concerned
with ultra-relativistic scattering of nuclei from each other, addressing questions about the quark-gluon
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plasma. It should be nuclear physics, since we consider “dirty” systems of many particles, which are
what nuclear physicists are good at.

2.8 Mesons, leptons and neutrinos

In 1934 Yukawa introduces a new particle, the pion (π), which can be used to describe nuclear binding.
He estimates it’s mass at 200 electron masses. In 1937 such a particle is first seen in cosmic rays. It is later
realised that it interacts too weakly to be the pion and is actually a lepton (electron-like particle) called
the µ. The π is found (in cosmic rays) and is the progenitor of the µ’s that were seen before:

π+ → µ+ + νµ (2.2)

The next year artificial pions are produced in an accelerator, and in 1950 the neutral pion is found,

π0 → γγ. (2.3)

This is an example of the conservation of electric charge. Already in 1938 Stuckelberg had found that
there are other conserved quantities: the number of baryons (n and p and . . . ) is also conserved!

After a serious break in the work during the latter part of WWII, activity resumed again. The theory of
electrons and positrons interacting through the electromagnetic field (photons) was tackled seriously, and
with important contributions of (amongst others) Tomonaga, Schwinger and Feynman was developed
into a highly accurate tool to describe hyperfine structure.

Experimental activity also resumed. Cosmic rays still provided an important source of extremely
energetic particles, and in 1947 a “strange” particle (K+ was discovered through its very peculiar decay
pattern. Balloon experiments led to additional discoveries: So-called V particles were found, which were
neutral particles, identified as the Λ0 and K0. It was realised that a new conserved quantity had been
found. It was called strangeness.

The technological development around WWII led to an explosion in the use of accelerators, and more
and more particles were found. A few of the important ones are the antiproton, which was first seen in
1955, and the ∆, a very peculiar excited state of the nucleon, that comes in four charge states ∆++, ∆+, ∆0,
∆−.

Theory was develop-ping rapidly as well. A few highlights: In 1954 Yang and Mills develop the
concept of gauged Yang-Mills fields. It looked like a mathematical game at the time, but it proved to be
the key tool in developing what is now called “the standard model”.

In 1956 Yang and Lee make the revolutionary suggestion that parity is not necessarily conserved in
the weak interactions. In the same year “madam” CS Wu and Alder show experimentally that this is true:
God is weakly left-handed!

In 1957 Schwinger, Bludman and Glashow suggest that all weak interactions (radioactive decay) are
mediated by the charged bosons W±. In 1961 Gell-Mann and Ne’eman introduce the “eightfold way”: a
mathematical taxonomy to organise the particle zoo.

2.9 The sub-structure of the nucleon (QCD)

In 1964 Gell-Mann and Zweig introduce the idea of quarks: particles with spin 1/2 and fractional charges.
They are called up, down and strange and have charges 2/3,−1/3,−1/3 times the electron charge.

Since it was found (in 1962) that electrons and muons are each accompanied by their own neutrino, it
is proposed to organise the quarks in multiplets as well:

e νe (u, d)
µ νµ (s, c) (2.4)

This requires a fourth quark, which is called charm.
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In 1965 Greenberg, Han and Nambu explain why we can’t see quarks: quarks carry colour charge,
and all observe particles must have colour charge 0. Mesons have a quark and an antiquark, and baryons
must be build from three quarks through its peculiar symmetry.

The first evidence of quarks is found (1969) in an experiment at SLAC, where small pips inside the
proton are seen. This gives additional impetus to develop a theory that incorporates some of the ideas
already found: this is called QCD. It is shown that even though quarks and gluons (the building blocks
of the theory) exist, they cannot be created as free particles. At very high energies (very short distances) it
is found that they behave more and more like real free particles. This explains the SLAC experiment, and
is called asymptotic freedom.

The J/ψ meson is discovered in 1974, and proves to be the cc̄ bound state. Other mesons are discovered
(D0, ūc) and agree with QCD.

In 1976 a third lepton, a heavy electron, is discovered (τ). This was unexpected! A matching quark
(b for bottom or beauty) is found in 1977. Where is its partner, the top? It will only be found in 1995,
and has a mass of 175 GeV/c2 (similar to a lead nucleus. . . )! Together with the conclusion that there are
no further light neutrinos (and one might hope no quarks and charged leptons) this closes a chapter in
particle physics.

2.10 The W±and Z bosons

On the other side a electro-weak interaction is developed by Weinberg and Salam. A few years later ’t
Hooft shows that it is a well-posed theory. This predicts the existence of three extremely heavy bosons
that mediate the weak force: the Z0 and the W±. These have been found in 1983. There is one more
particle predicted by these theories: the Higgs particle. Must be very heavy!

2.11 GUTS, Supersymmetry, Supergravity

This is not the end of the story. The standard model is surprisingly inelegant, and contains way to many
parameters for theorists to be happy. There is a dark mass problem in astrophysics – most of the mass in
the universe is not seen! This all leads to the idea of an underlying theory. Many different ideas have been
developed, but experiment will have the last word! It might already be getting some signals: researchers
at DESY see a new signal in a region of particle that are 200 GeV heavy – it might be noise, but it could
well be significant!

There are several ideas floating around: one is the grand-unified theory, where we try to combine all
the disparate forces in nature in one big theoretical frame. Not unrelated is the idea of supersymmetries:
For every “boson” we have a “fermion”. There are some indications that such theories may actually be
able to make useful predictions.

2.12 Extraterrestrial particle physics

One of the problems is that it is difficult to see how e can actually build a microscope that can look a a
small enough scale, i.e., how we can build an accelerator that will be able to accelerate particles to high
enough energies? The answer is simple – and has been more or less the same through the years: Look at
the cosmos. Processes on an astrophysical scale can have amazing energies.

2.12.1 Balloon experiments

One of the most used techniques is to use balloons to send up some instrumentation. Once the atmosphere
is no longer the perturbing factor it normally is, one can then try to detect interesting physics. A problem
is the relatively limited payload that can be carried by a balloon.
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2.12.2 Ground based systems

These days people concentrate on those rare, extremely high energy processes (of about 1029 eV), where
the effect of the atmosphere actually help detection. The trick is to look at showers of (lower-energy)
particles created when such a high-energy particle travels through the earth’s atmosphere.

2.12.3 Dark matter

One of the interesting cosmological questions is whether we live in an open or closed universe. From
various measurements we seem to get conflicting indications about the mass density of (parts of) the
universe. It seems that the ration of luminous to non-luminous matter is rather small. Where is all that
“dark mass”: Mini-Jupiter’s, small planetoids, dust, or new particles....

2.12.4 (Solar) Neutrinos

The neutrino is a very interesting particle. Even though we believe that we understand the nuclear physics
of the sun, the number of neutrinos emitted from the sun seems to anomalously small. Unfortunately this
is very hard to measure, and one needs quite a few different experiments to disentangle the physics
behind these processes. Such experiments are coming on line in the next few years. These can also look at
neutrinos coming from other astrophysical sources, such as supernovas, and enhance our understanding
of those processes. Current indications from Kamiokande are that neutrinos do have mass, but oscillation
problems still need to be resolved.



Chapter 3

Experimental tools

In this chapter we shall concentrate on the experimental tools used in nuclear and particle physics. Mainly
the present ones, but it is hard to avoid discussing some of the history.

3.1 Accelerators

3.1.1 Resolving power

Both nuclear and particle physics experiments are typically performed at accelerators, where particles
are accelerated to extremely high energies, in most cases relativistic (i.e., v ≈ c). To understand why
this happens we need to look at the rôle the accelerators play. Accelerators are nothing but extremely
big microscopes. At ultrarelativistic energies it doesn’t really matter what the mass of the particle is, its
energy only depends on the momentum:

E = hν =
√

m2c4 + p2c2 ≈ pc (3.1)

from which we conclude that

λ =
c
ν

=
h
p

. (3.2)

The typical resolving power of a microscope is about the size of one wave-length, λ. For an an ultrarela-
tivistic particle this implies an energy of

E = pc = h
c
λ

(3.3)

You may not immediately appreciate the enormous scale of these energies. An energy of 1 TeV (= 1012eV)

Table 3.1: Size and energy-scale for various objects

particle scale energy
atom 10−10m 2 keV
nucleus 10−14m 20 MeV
nucleon 10−15m 200 MeV
quark? < 10−18m >200 GeV

is 3× 10−7 J, which is the same as the kinetic energy of a 1g particle moving at 1.7 cm/s. And that for
particles that are of submicroscopic size! We shall thus have to push these particles very hard indeed
to gain such energies. In order to push these particles we need a handle to grasp hold of. The best one

13
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we know of is to use charged particles, since these can be accelerated with a combination of electric and
magnetic fields – it is easy to get the necessary power as well.

3.1.2 Types

We can distinguish accelerators in two ways. One is whether the particles are accelerated along straight
lines or along (approximate) circles. The other distinction is whether we used a DC (or slowly varying
AC) voltage, or whether we use radio-frequency AC voltage, as is the case in most modern accelerators.

3.1.3 DC fields

Acceleration in a DC field is rather straightforward: If we have two plates with a potential V between
them, and release a particle near the plate at lower potential it will be accelerated to an energy 1

2 mv2 = eV.
This was the original technique that got Cockroft and Wolton their Nobel prize.

van der Graaff generator

A better system is the tandem van der Graaff generator, even though this technique is slowly becoming
obsolete in nuclear physics (technological applications are still very common). The idea is to use a (non-
conducting) rubber belt to transfer charge to a collector in the middle of the machine, which can be used
to build up sizable (20 MV) potentials. By sending in negatively charged ions, which are stripped of (a
large number of) their electrons in the middle of the machine we can use this potential twice. This is the
mechanism used in part of the Daresbury machine.

Other linear accelerators

Linear accelerators (called Linacs) are mainly used for electrons. The idea is to use a microwave or radio
frequency field to accelerate the electrons through a number of connected cavities (DC fields of the desired
strength are just impossible to maintain). A disadvantage of this system is that electrons can only be
accelerated in tiny bunches, in small parts of the time. This so-called “duty-cycle”, which is small (less
than a percent) makes these machines not so beloved. It is also hard to use a linac in colliding beam mode
(see below).

There are two basic setups for a linac. The original one is to use elements of different length with a
fast oscillating (RF) field between the different elements, designed so that it takes exactly one period of
the field to traverse each element. Matched acceleration only takes place for particles traversing the gaps
when the field is almost maximal, actually sightly before maximal is OK as well. This leads to bunches
coming out.

More modern electron accelerators are build using microwave cavities, where standing microwaves
are generated. Such a standing wave can be thought of as one wave moving with the electron, and another
moving the other wave. If we start of with relativistic electrons, v ≈ c, this wave accelerates the electrons.
This method requires less power than the one above.

Cyclotron

The original design for a circular accelerator dates back to the 1930’s, and is called a cyclotron. Like all
circular accelerators it is based on the fact that a charged particle (charge qe) in a magnetic field B with
velocity v moves in a circle of radius r, more precisely

qvB =
γmv2

r
, (3.4)

where γm is the relativistic mass, γ = (1− β2)−1/2, β = v/c. A cyclotron consists of two metal “D”-rings,
in which the particles are shielded from electric fields, and an electric field is applied between the two
rings, changing sign for each half-revolution. This field then accelerates the particles.
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Figure 3.1: A sketch of a tandem van der Graaff generator

The field has to change with a frequency equal to the angular velocity,

f =
ω

2π
=

v
2πr

=
qB

2πγm
. (3.5)

For non-relativistic particles, where γ ≈ 1, we can thus run a cyclotron at constant frequency, 15.25
MHz/T for protons. Since we extract the particles at the largest radius possible, we can determine the
velocity and thus the energy,

E = γmc2 = [(qBRc)2 + m2c4]1/2 (3.6)

Synchroton

The shear size of a cyclotron that accelerates particles to 100 GeV or more would be outrageous. For
that reason a different type of accelerator is used for higher energy, the so-called synchroton where the
particles are accelerated in a circle of constant diameter.

In a circular accelerator (also called synchroton), see Fig. 3.5, we have a set of magnetic elements that
bend the beam of charged into an almost circular shape, and empty regions in between those elements
where a high frequency electro-magnetic field accelerates the particles to ever higher energies. The parti-
cles make many passes through the accelerator, at every increasing momentum. This makes critical timing
requirements on the accelerating fields, they cannot remain constant.
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Figure 3.2: A sketch of a linac

Figure 3.3: Acceleration by a standing wave

Using the equations given above, we find that

f =
qB

2πγm
=

qBc2

2πE
=

qBc2

2π(m2c4 + q2B2R2c2)1/2 (3.7)

For very high energy this goes over to

f =
c

2πR
, E = qBRc, (3.8)

so we need to keep the frequency constant whilst increasing the magnetic field. In between the bend-
ing elements we insert (here and there) microwave cavities that accelerate the particles, which leads to
bunching, i.e., particles travel with the top of the field.

So what determines the size of the ring and its maximal energy? There are two key factors:
As you know, a free particle does not move in a circle. It needs to be accelerated to do that. The magnetic
elements take care of that, but an accelerated charge radiates – That is why there are synchroton lines at
Daresbury! The amount of energy lost through radiation in one pass through the ring is given by (all

Figure 3.4: A sketch of a cyclotron
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Figure 3.5: A sketch of a synchroton

quantities in SI units)

∆E =
4π

3ε0

q2β3γ4

R
(3.9)

with β = v/c, γ = 1/
√

1− β2, and R is the radius of the accelerator in meters. In most cases v ≈ c, and
we can replace β by 1. We can also use one of the charges to re-express the energy-loss in eV:

∆E ≈ 4π

3ε0

qγ4

R
∆E ≈ 4π

3ε0

q
R

(
E

mc2

)4
. (3.10)

Thus the amount of energy lost is proportional to the fourth power of the relativistic energy, E = γmc2.
For an electron at 1 TeV energy γ is

γe =
E

mec2 =
1012

511× 103 = 1.9× 106 (3.11)

and for a proton at the same energy

γp =
E

mpc2 =
1012

939× 106 = 1.1× 103 (3.12)

This means that a proton looses a lot less energy than an electron (the fourth power in the expression
shows the difference to be 1012!). Let us take the radius of the ring to be 5 km (large, but not extremely
so). We find the results listed in table 3.1.3.

Table 3.2: Energy loss for a proton or electron in a synchroton of radius 5km

proton E ∆E
1 GeV 1.5× 10−11 eV
10 GeV 1.5× 10−7 eV
100 GeV 1.5× 10−3 eV
1000 GeV 1.5× 101 eV

electron E ∆E
1 GeV 2.2× 102 eV
10 GeV 2.2 MeV
100 GeV 22 GeV
1000 GeV 2.2× 1015 GeV

The other key factor is the maximal magnetic field. From the standard expression for the centrifugal
force we find that the radius R for a relativistic particle is related to it’s momentum (when expressed in
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GeV/c) by
p = 0.3BR (3.13)

For a standard magnet the maximal field that can be reached is about 1T, for a superconducting one 5T. A
particle moving at p = 1TeV/c = 1000GeV/c requires a radius of

Table 3.3: Radius R of an synchroton for given magnetic fields and momenta.

B p R
1 T 1 GeV/c 3.3 m

10 GeV/c 33 m
100 GeV/c 330 m
1000 GeV/c 3.3 km

5 T 1 GeV/c 0.66 m
10 GeV/c 6.6 m
100 GeV/c 66 m
1000 GeV/c 660 m

3.2 Targets

There are two ways to make the necessary collisions with the accelerated beam: Fixed target and colliding
beams.

In fixed target mode the accelerated beam hits a target which is fixed in the laboratory. Relativistic
kinematics tells us that if a particle in the beam collides with a particle in the target, their centre-of-mass
(four) momentum is conserved. The only energy remaining for the reaction is the relative energy (or
energy within the cm frame). This can be expressed as

ECM =
[
m2

bc4 + m2
t c4 + 2mtc2EL

]1/2
(3.14)

where mb is the mass of a beam particle, mt is the mass of a target particle and EL is the beam energy as
measured in the laboratory. as we increase EL we can ignore the first tow terms in the square root and we
find that

ECM ≈
√

2mtc2EL, (3.15)

and thus the centre-of-mass energy only increases as the square root of the lab energy!
In the case of colliding beams we use the fact that we have (say) an electron beam moving one way,

and a positron beam going in the opposite direction. Since the centre of mass is at rest, we have the full
energy of both beams available,

ECM = 2EL. (3.16)

This grows linearly with lab energy, so that a factor two increase in the beam energy also gives a factor
two increase in the available energy to produce new particles! We would only have gained a factor

√
2

for the case of a fixed target. This is the reason that almost all modern facilities are colliding beams.

3.3 The main experimental facilities

Let me first list a couple of facilities with there energies, and then discuss the facilities one-by-one.
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Table 3.4: Fixed target facilities, and their beam energies
accelerator facility particle energy
KEK Tokyo p 12 GeV
SLAC Stanford e− 25GeV
PS CERN p 28 GeV
AGS BNL p 32 GeV
SPS CERN p 250 GeV
Tevatron II FNL p 1000 GeV

Table 3.5: Colliding beam facilities, and their beam energies
accelerator facility particle & energy (in GeV)
CESR Cornell e+(6) + e−(6)
PEP Stanford e+(15) + e−(15)
Tristan KEK e+(32) + e−(32)
SLC Stanford e+(50) + e−(50)
LEP CERN e+(60) + e−(60)
Spp̄S CERN p(450) + p̄(450)
Tevatron I FNL p(1000) + p̄(1000)
LHC CERN e−(50) + p(8000)

p(8000) + p̄(8000)

3.3.1 SLAC (B factory, Babar)

Stanford Linear Accelerator Center, located just south of San Francisco, is the longest linear accelerator
in the world. It accelerates electrons and positrons down its 2-mile length to various targets, rings and
detectors at its end. The PEP ring shown is being rebuilt for the B factory, which will study some of the
mysteries of antimatter using B mesons. Related physics will be done at Cornell with CESR and in Japan
with KEK.

3.3.2 Fermilab (D0 and CDF)

Fermi National Accelerator Laboratory, a high-energy physics laboratory, named after particle physicist
pioneer Enrico Fermi, is located 30 miles west of Chicago. It is the home of the world’s most powerful
particle accelerator, the Tevatron, which was used to discover the top quark.

3.3.3 CERN (LEP and LHC)

CERN (European Laboratory for Particle Physics) is an international laboratory where the W and Z bosons
were discovered. CERN is the birthplace of the World-Wide Web. The Large Hadron Collider (see below)
will search for Higgs bosons and other new fundamental particles and forces.

3.3.4 Brookhaven (RHIC)

Brookhaven National Laboratory (BNL) is located on Long Island, New York. Charm quark was discov-
ered there, simultaneously with SLAC. The main ring (RHIC) is 0.6 km in radius.

3.3.5 Cornell (CESR)

The Cornell Electron-Positron Storage Ring (CESR) is an electron-positron collider with a circumference of
768 meters, located 12 meters below the ground at Cornell University campus. It is capable of producing
collisions between electrons and their anti-particles, positrons, with centre-of-mass energies between 9
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Figure 3.6: A picture of SLAC

Figure 3.7: A picture of Fermilab

and 12 GeV. The products of these collisions are studied with a detection apparatus, called the CLEO
detector.

3.3.6 DESY (Hera and Petra)

The DESY laboratory, located in Hamburg, Germany, discovered the gluon at the PETRA accelerator.
DESY consists of two accelerators: HERA and PETRA. These accelerators collide electrons and protons.

3.3.7 KEK (tristan)

The KEK laboratory, in Japan, was originally established for the purpose of promoting experimental stud-
ies on elementary particles. A 12 GeV proton synchrotron was constructed as the first major facility. Since
its commissioning in 1976, the proton synchrotron played an important role in boosting experimental ac-
tivities in Japan and thus laid the foundation of the next step of KEK’s high energy physics program, a 30
GeV electron-positron colliding-beam accelerator called TRISTAN.
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Figure 3.8: A picture of CERN

3.3.8 IHEP

Institute for High-Energy Physics, in the People’s Republic of China, performs detailed studies of the tau
lepton and charm quark.

3.4 Detectors

Detectors are used for various measurements on the physical processes occurring in particle physics. The
most important of those are

• To identify particles.

• To measure positions.

• To measure time differences.
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Figure 3.9: A picture of Brookhaven National Lab

• To measure momentum.

• To measure energy.

Let me now go over some of the different pieces of machinery used to perform such measurements

3.4.1 Scintillation counters

This is based on the fact that charged particles traversing solids excite the electrons in such materials.
In some solids light is then emitted. This light can be collected and amplified by photomultipliers. This
technique has a very fast time response, of about 200 ps. For this reason one uses scintillators as “trigger”.
This means that a pulse from the scintillator is used to say that data should now be accepted from the other
pieces of equipment.

Another use is to measure time-of-flight. When one uses a pair of scintillation detectors, one can
measure the time difference for a particle hitting both of them, thus determining a time difference and
velocity. This is only useful for slow particles, where v differs from c by a reasonable amount.

3.4.2 Proportional/Drift Chamber

Once again we use charged particles to excite electrons. We now use a gas, where the electrons get liber-
ated. We then use the fact that these electrons drift along electric field lines to collect them on wires. If we
have many such wires, we can see where the electrons were produced, and thus measure positions with
an accuracy of 500 µm or less.

3.4.3 Semiconductor detectors

Using modern techniques we can etch very fine strips on semiconductors. We can easily have multiple
layers of strips running along different directions as well. These can be used to measure position (a hit in
a certain set of strips). Typical resolutions are 5 µm. A problem with such detectors is so-called radiation
damage, due to the harsh environment in which they are operated.
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Figure 3.10: A picture of the Cornell accelerator

3.4.4 Spectrometer

One uses a magnet with a position sensitive detector at the end to bend the track of charged particles, and
determine the radius of the circular orbit. This radius is related to the momentum of the particles.

3.4.5 Čerenkov Counters

These are based on the analogue of a supersonic boom. When a particles velocity is higher than the speed
of light in medium, v > c/n, where n is the index of refraction we get a shock wave. As can be seen in
Fig. 3.14a) for slow motion the light emitted by a particle travels faster than the particle (the circles denote
how far the light has travelled). On the other hand, when the particle moves faster than the speed of
light, we get a linear wave-front propagating through the material, as sketched in Fig. 3.14b. The angle
of this wave front is related to the speed of the particles, by cos θ = 1

βn . Measuring this angle allows us
to determine speed (a problem here is the small number of photons emitted). This technique is extremely
useful for threshold counters, because if we see any light, we know that the velocity of particles is larger
than c/n.

3.4.6 Transition radiation

3.4.7 Calorimeters
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Figure 3.11: A picture of HERA
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Figure 3.12: A picture of KEK

Figure 3.13: A picture of IHEP
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Figure 3.14: Čerenkov radiation



Chapter 4

Nuclear Masses

4.1 Experimental facts

1. Each nucleus has a (positive) charge Ze, and integer number times the elementary charge e. This
follows from the fact that atoms are neutral!

2. Nuclei of identical charge come in different masses, all approximate multiples of the “nucleon
mass”. (Nucleon is the generic term for a neutron or proton, which have almost the same mass,
mp = 938.272MeV/c2, mn = MeV/c2.) Masses can easily be determined by analysing nuclei in a
mass spectrograph which can be used to determine the relation between the charge Z (the number of
protons, we believe) vs. the mass.

Nuclei of identical charge (chemical type) but different mass are called isotopes. Nuclei of approximately
the same mass, but different chemical type, are called isobars.

4.1.1 mass spectrograph

A mass spectrograph is a combination of a bending magnet, and an electrostatic device (to be completed).

4.2 Interpretation

We conclude that the nucleus of mass m ≈ AmN contains Z positively charged nucleons (protons) and
N = A− Z neutral nucleons (neutrons). These particles are bound together by the “nuclear force”, which
changes the mass below that of free particles. We shall typically write AEl for an element of chemical type
El, which determines Z, containing A nucleons.

4.3 Deeper analysis of nuclear masses

To analyse the masses even better we use the atomic mass unit (amu), which is 1/12th of the mass of the
neutral carbon atom,

1 amu =
1

12
m12C. (4.1)

This can easily be converted to SI units by some chemistry. One mole of 12C weighs 0.012 kg, and contains
Avogadro’s number particles, thus

1 amu =
0.001
NA

kg = 1.66054× 10−27 kg = 931.494MeV/c2. (4.2)

27
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Figure 4.1: B/A versus A

The quantity of most interest in understanding the mass is the binding energy, defined for a neutral
atom as the difference between the mass of a nucleus and the mass of its constituents,

B(A, Z) = ZMHc2 + (A− Z)Mnc2 − M(A, Z)c2. (4.3)

With this choice a system is bound when B > 0, when the mass of the nucleus is lower than the mass of
its constituents. Let us first look at this quantity per nucleon as a function of A, see Fig. 4.1

This seems to show that to a reasonable degree of approximation the mass is a function of A alone, and
furthermore, that it approaches a constant. This is called nuclear saturation. This agrees with experiment,
which suggests that the radius of a nucleus scales with the 1/3rd power of A,

RRMS ≈ 1.1A1/3 fm. (4.4)

This is consistent with the saturation hypothesis made by Gamov in the 30’s:

As A increases the volume per nucleon remains constant.

For a spherical nucleus of radius R we get the condition

4
3

πR3 = AV1, (4.5)

or

R =
(

V13
4π

)1/3
A1/3. (4.6)

From which we conclude that
V1 = 5.5 fm3 (4.7)

4.4 Nuclear mass formula

There is more structure in Fig. 4.1 than just a simple linear dependence on A. A naive analysis suggests
that the following terms should play a rôle:

1. Bulk energy: This is the term studied above, and saturation implies that the energy is proportional
to Bbulk = αA.
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Table 4.1: Fit of masses to Eq. (4.8)
.

parameter value
α 15.36 MeV
β 16.32 MeV
γ 90.45 MeV
ε 0.6928 MeV
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Figure 4.2: Difference between fitted binding energies and experimental values, as a function of N and Z.

2. Surface energy: Nucleons at the surface of the nuclear sphere have less neighbours, and should feel
less attraction. Since the surface area goes with R2, we find Bsurface = −βA.

3. Pauli or symmetry energy: nucleons are fermions (will be discussed later). That means that they
cannot occupy the same states, thus reducing the binding. This is found to be proportional to
Bsymm = −γ(N/2− Z/2)2/A2.

4. Coulomb energy: protons are charges and they repel. The average distance between is related to the
radius of the nucleus, the number of interaction is roughly Z2 (or Z(Z− 1)). We have to include the
term BCoul = −εZ2/A.

Taking all this together we fit the formula

B(A, Z) = αA− βA2/3 − γ(A/2− Z)2 A−1 − εZ2 A−1/3 (4.8)

to all know nuclear binding energies with A ≥ 16 (the formula is not so good for light nuclei). The fit
results are given in table 4.1.

In Fig. 4.3 we show how well this fit works. There remains a certain amount of structure, see below, as
well as a strong difference between neighbouring nuclei. This is due to the superfluid nature of nuclear
material: nucleons of opposite momenta tend to anti-align their spins, thus gaining energy. The solution
is to add a pairing term to the binding energy,

Bpair =

{
A−1/2 for N odd, Z odd
−A−1/2 for N even, Z even

(4.9)
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Table 4.2: Fit of masses to Eq. (4.10)

parameter value
α 15.36 MeV
β 16.32 MeV
γ 90.46 MeV
δ 11.32 MeV
ε 0.6929 MeV

-8
-4
0
4
8
12

50 100 150
N

20

40

60

80

100

Z

Figure 4.3: Difference between fitted binding energies and experimental values, as a function of N and Z.

The results including this term are significantly better, even though all other parameters remain at the
same position, see Table 4.2. Taking all this together we fit the formula

B(A, Z) = αA− βA2/3 − γ(A/2− Z)2 A−1 − δBpair(A, Z)− εZ2 A−1/3 (4.10)

4.5 Stability of nuclei

In figure 4.5 we have colour coded the nuclei of a given mass A = N + Z by their mass, red for those of
lowest mass through to magenta for those of highest mass. We can see that typically the nuclei that are
most stable for fixed A have more neutrons than protons, more so for large A increases than for low A.
This is the “neutron excess”.

4.5.1 β decay

If we look at fixed nucleon number A, we can see that the masses vary strongly,
It is known that a free neutron is not a stable particle, it actually decays by emission of an electron and

an antineutrino,
n → p + e− + ν̄e. (4.11)

The reason that this reaction can take place is that it is endothermic, mnc2 > mpc2 + mec2. (Here we
assume that the neutrino has no mass.) The degree of allowance of such a reaction is usually expressed in
a Q value, the amount of energy released in such a reaction,

Q = mnc2 −mpc2 −mec2 = 939.6− 938.3− 0.5 = 0.8 MeV. (4.12)



4.5. STABILITY OF NUCLEI 31

0 50 100 150 200 250 300

A

-10

0

10

∆
E

B
 (

M
e
V

)

Figure 4.4: B/A versus A, mass formula subtracted
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Figure 4.5: The valley of stability
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Figure 4.6: A cross section through the mass table for fixed A. To the left, A = 56, and to the right,
A = 150.
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Generically it is found that two reaction may take place, depending on the balance of masses. Either a
neutron “β decays” as sketched above, or we have the inverse reaction

p → n + e+ + νe. (4.13)

For historical reason the electron or positron emitted in such a process is called a β particle. Thus in β−

decay of a nucleus, a nucleus of Z protons and N neutrons turns into one of Z + 1 protons and N − 1
neutrons (moving towards the right in Fig. 4.6). In β+ decay the nucleus moves to the left. Since in that
figure I am using atomic masses, the Q factor is

Qβ− = M(A, Z)c2 − M(A, Z + 1)c2,

Qβ− = M(A, Z)c2 − M(A, Z− 1)c2 − 2mec2. (4.14)

The double electron mass contribution in this last equation because the atom looses one electron, as well
as emits a positron with has the same mass as the electron.

In similar ways we can study the fact whether reactions where a single nucleon (neutron or proton) is
emitted, as well as those where more complicated objects, such as Helium nuclei (α particles) are emitted.
I shall return to such processed later, but let us note the Q values,

neutron emission Q = (M(A, Z)− M(A− 1, Z)−mn)c2,
proton emission Q = (M(A, Z)− M(A− 1, Z− 1)− M(1, 1))c2,

α emission Q = (M(A, Z)− M(A− 4, Z− 2)− M(4, 2))c2,
break up Q = (M(A, Z)− M(A− A1, Z− Z1)− M(A1, Z1))c2. (4.15)

4.6 properties of nuclear states

Nuclei are quantum systems, and as such must be described by a quantum Hamiltonian. Fortunately
nuclear energies are much smaller than masses, so that a description in terms of non-relativistic quantum
mechanics is possible. Such a description is not totally trivial since we have to deal with quantum systems
containing many particles. Rather then solving such complicated systems, we often resort to models. We
can establish, on rather general grounds, that nuclei are

4.6.1 quantum numbers

As in any quantum system there are many quantum states in each nucleus. These are labelled by their
quantum numbers, which, as will be shown later, originate in symmetries of the underlying Hamiltonian,
or rather the underlying physics.

angular momentum

One of the key invariances of the laws of physics is rotational invariance, i.e., physics is independent of
the direction you are looking at. This leads to the introduction of a vector angular momentum operator,

L̂ = r̂ × p̂, (4.16)

which generates rotations. As we shall see later quantum states are not necessarily invariant under the
rotation, but transform in a well-defined way. The three operators L̂x, L̂y and L̂z satisfy a rather intriguing
structure,

[L̂x, L̂y] ≡ L̂x L̂y − L̂y L̂x = ih̄L̂z, (4.17)

and the same for q cyclic permutation of indices (xyz → yzx or zxy). This shows that we cannot determine
all three components simultaneously in a quantum state. One normally only calculates the length of the
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Figure 4.7: A pictorial representation of the “quantum precession” of an angular momentum of fixed
length L and projection M.

angular momentum vector, and its projection on the z axis,

L̂2
φLM = h̄2L(L + 1)φLM,

L̂zφLM = h̄LzφLM. (4.18)

It can be shown that L is a non-negative integer, and M is an integer satisfying |M| < L, i.e., the projection
is always smaller than or equal to the length, a rather simple statement in classical mechanics.

The standard, albeit slightly simplified, picture of this process is that of a fixed length angular mo-
mentum precessing about the z axis, keeping the projection fixed, as shown in Fig. 4.7.

The energy of a quantum state is independent of the M quantum number, since the physics is inde-
pendent of the orientation of L in space (unless we apply a magnetic field that breaks this symmetry). We
just find multiplets of 2L + 1 states with the same energy and value of L, differing only in M.

Unfortunately the story does not end here. Like electrons, protons and neutron have a spin, i.e., we
can use a magnetic field to separate nucleons with spin up from those with spin down. Spins are like
orbital angular momenta in many aspects, we can write three operators Ŝ that satisfy the same relation as
the L̂’s, but we find that

Ŝ2
φS,Sz = h̄2 3

4
φS,Sz , (4.19)

i.e., the length of the spin is 1/2, with projections ±1/2.
Spins will be shown to be coupled to orbital angular momentum to total angular momentum J,

Ĵ = L̂ + Ŝ, (4.20)

and we shall specify the quantum state by L, S, J and Jz. This can be explained pictorially as in Fig. 4.8.
There we show how, for fixed length J the spin and orbital angular momentum precess about the vector
J, which in its turn precesses about the z-axis. It is easy to see that if vecL and S are fully aligned we have
J = L + S, and if they are anti-aligned J = |L− S|. A deeper quantum analysis shows that this is the way
the quantum number work. If the angular momentum quantum numbers of the states being coupled are
L and S, the length of the resultant vector J can be

J = |L− S|, |L− S|+ 2, . . . , L + S. (4.21)

We have now discussed the angular momentum quantum number for a single particle. For a nucleus
which in principle is made up from many particles, we have to add all these angular momenta together
until we get something called the total angular momentum. Since the total angular momentum of a single
particle is half-integral (why?), the total angular momentum of a nucleus is integer for even A, and half-
integer for odd A.
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Figure 4.8: A pictorial representation of the vector addition of spin and orbital angular momentum.

Parity

Another symmetry of the wave function is parity. If we change r → −r, i.e., mirror space, the laws of
physics are invariant. Since we can do this operation twice and get back where we started from, any
eigenvalue of this operation must be ±1, usually denoted as Π = ±. It can be shown that for a particle
with orbital angular momentum L, Π = (−1)L. The parity of many particles is just the product of the
individual parities.

isotopic spin (Isobaric spin, isospin)

The most complicated symmetry in nuclear physics is isospin. In contrast to the symmetries above this
is not exact, but only approximate. The first clue of this symmetry come from the proton and neutron
masses, mn = MeV/c2 and mp = MeV/c2, and their very similar behaviour in nuclei. Remember that the
dominant binding terms only depended on the number of nucleons, not on what type of nucleons we are
dealing with.

All of this leads to the assumption of another abstract quantity, called isospin, which describes a new
symmetry of nature. We assume that both neutrons and protons are manifestation of one single particle,
the nucleon, with isospin down or up, respectively. We shall have to see whether this makes sense by
looking in more detail at the nuclear physics. We propose the identification

Q = (Iz + 1/2)e, (4.22)

where Iz is the z projection of the vectorial quantity called isospin. Apart from the neutron-proton mass
difference, isospin symmetry in nuclei is definitely broken by the Coulomb force, which acts on protons
but not on neutrons. We shall argue that the nuclear force, that couples to the “nucleon charge” rather
than electric charge, respects this symmetry. What we shall do is look at a few nuclei where we can study
both a nucleus and its mirror image under the exchange of protons and neutrons. One example are the
nuclei 7He and 7B (2 protons and 5 neutrons, Iz = −3/2 vs. 5 protons and 2 neutrons, Iz = 3/2) and
7Li and 7B (3 protons and 4 neutrons, Iz = −1/2 vs. 4 protons and 3 neutrons, Iz = 1/2), as sketched in
Fig. 4.9.

We note there the great similarity between the pairs of mirror nuclei. Of even more importance is the
fact that the 3/2−; 3/2 level occurs at the same energy in all four nuclei, suggestion that we can define
these states as an “isospin multiplet”, the same state just differing by Iz.

4.6.2 deuteron

Let us think of the deuteron (initially) as a state with L = 0, J = 1, S = 1, usually denoted as 3S1 (S means
L = 0, the 3 denotes S = 1, i.e., three possible spin orientations, and the subscript 1 the value of J). Let us
model the nuclear force as a three dimensional square well with radius R. The Schrödinger equation for
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Figure 4.9: The spectrum of the nuclei with A = 7. The label of each state is J, parity, isospin. The zeroes
of energy were determined by the relative nuclear masses.

the spherically symmetric S state is (work in radial coordinates)

− h̄2

2µ

1
r2

(
d
dr

r2 d
dr

R(r)
)

+ V(r)R(r) = ER(r). (4.23)

Here V(r) is the potential, and µ is the reduced mass,

µ =
mnmp

mn + mp
, (4.24)

which arises from working in the relative coordinate only. It is easier to work with u(r) = rR(r), which
satisfies the condition

− h̄2

2µ

d2

dr2 u(r) + V(r)u(r) = Eu(r), (4.25)

as well as u(0) = 0. The equation in the interior

− h̄2

2µ

d2

dr2 u(r)V0u(r) = Eu(r), u(0) = 0 (4.26)

has as solution

u = A sin κr, κ =

√
2µ

h̄2 (V0 + E). (4.27)

Outside the well we find the standard damped exponential,

u = B exp(kr), k =

√
2µ

h̄2 (−E). (4.28)

Matching derivatives at the boundary we find

− cot κR =
k
κ

=

√
−E

V0 + E
. (4.29)
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We shall now make the assumption that |E| � V0, which will prove true. Then we find

κ ≈

√
2µ

h̄2 V0, cot κR ≈ 0. (4.30)

Since it is known from experiment that the deuteron has only one bound state at energy −2.224573 ±
0.000002 MeV, we see that κR ≈ π/2! Substituting κ we see that

V0R2 =
π2h̄2

8µ
. (4.31)

If we take V0 = 30 MeV, we find R = 1.83 fm.
We can orient the spins of neutron and protons in a magnetic field, i.e., we find that there is an energy

Emagn = µNµS · B. (4.32)

(The units for this expression is the so-called nuclear magneton, µN = eh̄
2mp

.) Experimentally we know
that

µn = −1.91315± 0.00007µN µp = 2.79271± 0.00002µN (4.33)

If we compare the measured value for the deuteron, µd = 0.857411± 0.000019µN , with the sum of protons
and neutrons (spins aligned), we see that µp + µn = 0.857956± 0.00007µN . The close agreement suggest
that the spin assignment is largely OK; the small difference means that our answer cannot be the whole
story: we need other components in the wave function.

We know that an S state is spherically symmetric and cannot have a quadrupole moment, i.e., it does
not have a preferred axis of orientation in an electric field. It is known that the deuteron has a positive
quadrupole moment of 0.29e2 fm2, corresponding to an elongation of the charge distribution along the
spin axis.

From this we conclude that the deuteron wave function carries a small (7%) component of the 3D1
state (D: L = 2). We shall discuss later on what this means for the nuclear force.

4.6.3 Scattering of nucleons

We shall concentrate on scattering in an L = 0 state only, further formalism just gets too complicated. For
definiteness I shall just look at the scattering in the 3S1 channel, and the 1S0 one. (These are also called the
triplet and singlet channels.)

(not discussed this year! Needs some filling in.)

4.6.4 Nuclear Forces

Having learnt this much about nuclei, what can we say about the nuclear force, the attraction that holds
nuclei together? First of all, from Rutherford’s old experiments on α particle scattering from nuclei, one
can learn that the range of these forces is a few fm.

From the fact that nuclei saturate, and are bound, we would then naively build up a picture of a
potential that is strongly repulsive at short distances, and shows some mild attraction at a range of 1-2
fm, somewhat like sketched in Fig. 4.10.

Here we assume, that just as the Coulomb force can be derived from a potential that only depends on
the size of r,

V(r) =
q1q2

4πε0r
, (4.34)

the nuclear force depends only on r as well. This is the simplest way to construct a rotationally invariant
energy. For particles with spin other possibilities arise as well (e.g., Ŝ · r) so how can we see what the
nuclear force is really like?



4.6. PROPERTIES OF NUCLEAR STATES 37

Figure 4.10: Possible form for the internucleon potential, repulsive at short distances, and attractive at
large distances.

Since we have taken the force to connect pairs of particles, we can just study the interaction of two
nucleons, by looking both at the bound states (there is only one), and at scattering, where we study how
a nucleon gets deflected when it scatters of another nucleon. Let us first look at the deuteron, the bound
state of a proton and a neutron. The quantum numbers of its ground state are Jπ = 1+, I = 0. A little bit
of additional analysis shows that this is a state with S = 1, and L = 0 or 2. Naively one would expect a
lowest state S = 0, L = 0 (which must have I = for symmetry reasons not discussed here). So what can
we read of about the nuclear force from this result?

We conclude the following:

1. The nuclear force in the S waves is attractive.

2. Nuclear binding is caused by the tensor force.

3. The nuclear force is isospin symmetric (i.e., it is independent of the direction of isospin).
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Chapter 5

Nuclear models

There are two important classed of nuclear models: single particle and microscopic models, that concen-
trate on the individual nucleons and their interactions, and collective models, where we just model the
nucleus as a collective of nucleons, often a nuclear fluid drop.

Microscopic models need to take into account the Pauli principle, which states that no two nucleons
can occupy the same quantum state. This is due to the Fermi-Dirac statistics of spin 1/2 particles, which
states that the wave function is antisymmetric under interchange of any two particles

5.1 Nuclear shell model

The simplest of the single particle models is the nuclear shell model. It is based on the observation that
the nuclear mass formula, which describes the nuclear masses quite well on average, fails for certain
“magic numbers”, i.e., for neutron number N = 20, 28, 50, 82, 126 and proton number Z = 20, 28, 50, 82,
as indicated if Fig. xxxx. These nuclei are much more strongly bound than the mass formula predicts,
especially for the doubly magic cases, i.e., when N and Z are both magic. Further analysis suggests that
this is due to a shell structure, as has been seen in atomic physics.

5.1.1 Mechanism that causes shell structure

So what causes the shell structure? In atoms it is the Coulomb force of the heavy nucleus that forces the
electrons to occupy certain orbitals. This can be seen as an external agent. In nuclei no such external force
exits, so we have to find a different mechanism.

The solution, and the reason the idea of shell structure in nuclei is such a counter-intuitive notion,
is both elegant and simple. Consider a single nucleon in a nucleus. Within this nuclear fluid we can
consider the interactions of each of the nucleons with the one we have singled out. All of these nucleons
move rather quickly through this fluid, leading to the fact that our nucleons only sees the average effects
of the attraction of all the other ones. This leads to us replacing, to first approximation, this effect by an
average nuclear potential, as sketched in Fig. 5.1.

Thus the idea is that the shell structure is caused by the average field of all the other nucleons, a very
elegant but rather surprising notion!

5.1.2 Modelling the shell structure

Whereas in atomic physics we solve the Coulomb force problem to get the shell structure, we expect that
in nuclei the potential is more attractive in the centre, where the density is highest, and less attractive near
the surface. There is no reason why the attraction should diverge anywhere, and we expect the potential
to be finite everywhere. One potential that satisfies these criteria, and can be solved analytically, is the
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Figure 5.1: A sketch of the averaging approximation

Harmonic oscillator potential. Let us use that as a first model, and solve

− h̄2

2m
∆ψ(r) + 1

2 mω2r2ψ(r) = Eψ(r). (5.1)

The easiest way to solve this equation is to realise that, since r2 = x2 + y2 + z2, the Hamiltonian is actually
a sum of an x, y and z harmonic oscillator, and the eigenvalues are the sum of those three oscillators,

Enxnynz = (nx + ny + nz + 3/2)h̄ω. (5.2)

The great disadvantage of this form is that it ignores the rotational invariance of the potential. If we
separate the Schrödinger equation in radial coordinates as

Rnl(r)YLM(θ, φ) (5.3)

with Y the spherical harmonics, we find

− h̄2

2m
1
r2

∂

∂r

(
r2 ∂

∂r
R(r)

)
+

h̄2L(L + 1)
r2 R(r) + 1

2 mω2r2R(r) = EnLR(r). (5.4)

In this case it can be shown that
EnL = (2n + L + 3/2)h̄ω, (5.5)

and L is the orbital angular momentum of the state. We use the standard, so-called spectroscopic, notation
of s, p, d, f , g, h, i, j, . . . for L = 0, 1, 2, . . ..

In the left hand side of Fig. 5.2 we have list the number harmonic oscillator quanta in each set of shells.
We have made use of the fact that in the real potentials state of the same number of quanta but different L
are no longer degenerate, but there are groups of shells with big energy gaps between them. This cannot
predict the magic numbers beyond 20, and we need to find a different mechanism. There is one already
known for atoms, which is the so-called spin orbit splitting. This means that the degeneracy in the total
angular momentum (j = L ± 1/2) is lifted by an energy term that splits the aligned from anti-aligned
case. This is shown schematically in the right of the figure, where we label the states by n, l and j. The
gaps between the groups of shells are in reality much larger than the spacing within one shell, making
the binding-energy of a closed-shell nucleus much lower than that of its neighbours.

5.1.3 evidence for shell structure

Evidence for the shell structure can be seen in two ways:
1- By looking at nuclear reactions that add a nucleon or remove a nucleon from a closed shell nucleus. The
most sensitive of these are electron knockout reactions, where an electron comes in and an electron and a
proton or neutron escapes, usually denoted as (e, e′p) (e, e′n) reactions. In those we see clear evidence of
peaks at the single particle energies.
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Figure 5.2: A schematic representation of the shell structure in nuclei.

Figure 5.3: The spectra for the one-neutron hole nucleus 207Pb and the one-particle nucleus 209Pb.
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Figure 5.4: The shell structure of the one-neutron hole nucleus 207Pb and the one-particle nucleus 209Pb.

2- By looking at nuclei one particle or one hole away from a doubly magic nucleus. As an example look
at the nuclei around 208Pb, as in Fig. 5.3.

In order to understand this figure we need to think a little about the shell structure, as sketched very
schematically in Fig. 5.4: The one neutron-hole nucleus corresponds to taking away a single neutron
from the 50-82 shell, and the one neutron particle state to adding a a neutron above the N = 128 shell
closure. We can also understand more clearly why a closed shell nucleus has very few low-energy excited
quantum states, since we would have to create a hole below the closed shell, and promote the nucleon
in that shell to an open state above the closure. This requires an energy that equals the gap in the single-
particle energy.

5.2 Collective models

Another, and actually older, way to look at nuclei is as a drop of “quantum fluid”. This ignores the fact
that a nucleus is made up of protons and neutrons, and explains the structure of nuclei in terms of a
continuous system, just as we normally ignore the individual particles that make up a fluid.

5.2.1 Liquid drop model and mass formula

Now we have some basic information about the liquid drop model, let us try to reinterpret the mass
formula in terms of this model; especially as those of a spherical drop of liquid.

As a prime example consider the Coulomb energy. The general energy associated with a charge dis-
tribution is

ECoulomb = 1
2

∫
ρ(r1)ρ(r2)

4πε0r12
d3r1d3r2, (5.6)

where the charge distribution is the smeared out charge of the protons,

4π
∫ R

0
ρ(r)r2dr = Ze (5.7)
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If we take the charge to be homogeneously distributed ρ = Ze/(4/3πR3), then

ECoulomb =
(2π)(4π)

4πε0
ρ2

∫ R

0

∫ 1

−1

r2
1 dr1 d cos θ r2

2 dr2(
r2

1 + r2
2 − 2r1r2 cos θ

)1/2

=
πρ2

2ε0

∫ R

0

∫ R

0

(r1 + r2)− |r1 − r2|
r1r2

r2
1dr1 r2

2dr2

=
πρ2

2ε0

[
2

∫ R

0
x2dx

∫ R

0
ydy−

∫ R

0

∫ R

0
|r1 − r2|r1r2dr1 dr2

]
=

πρ2

2ε0

(
R5

3
− R515

)
=

πZ29e2

(4π)2R62ε0

4R5

15
=

e2

4πε0

3
10

Z2

R
. (5.8)

5.2.2 Equilibrium shape & deformation

Once we picture a nucleus as a fluid, we can ask question about its equilibrium shape. From experimental
data we know that near closed shells nuclei are spherical, i.e., the equilibrium shape is a sphere. When
both the proton and neutron number differ appreciably from the magic numbers, the ground state is often
found to be axially deformed, either prolate (cigar like) or oblate (like a pancake).

A useful analysis to perform is to see what happens when we deform a nucleus slightly, turning it into
an ellipsoid, with one axis slightly longer than the others, keeping a constant volume:

a = R(1 + ε), b = R(1 + ε)−1/2. (5.9)

The volume is 4
3 πab2, and is indeed constant. The surface area of an ellipsoid is more complicated, and

we find

S = 2π

[
b2 + ab

arcsin e
e

]
, (5.10)

where the eccentricity e is defined as

e =
[
1− b2/a2

]1/2
. (5.11)

For small deformation ε we find a much simpler result,

S = 4πR2
[

1 +
2
5

ε2
]

, (5.12)

and the surface area thus increases for both elongations and contractions. Thus the surface energy in-
creases by the same factor. There is one competing term, however, since the Coulomb energy also changes,
the Coulomb energy goes down, since the particles are further apart,

ECoulomb → ECoulomb

(
1− ε2

5

)
(5.13)

We thus find a change in energy of

DeltaE = ε2
[

2
5

βA2/3 − 1
5

εZ2 A−1/3
]

(5.14)

The spherical shape is stable if ∆E > 0.
Since it is found that the nuclear fluid is to very good approximation incompressible, the dynamical

excitations are those where the shape of the nucleus fluctuates, keeping the volume constant, as well as
those where the nucleus rotates without changing its intrinsic shape.
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Figure 5.5: Monopole fluctuations of a liquid drop

Figure 5.6: Dipole fluctuations of a liquid drop

5.2.3 Collective vibrations

Let us first look at collective vibrations, and for simplicity only at those of a spherical fluid drop. We
can think of a large number of shapes; a complete set can be found by parametrising the surface as
r = ∑L,M aLMYLM(θ, φ), where YLM are the spherical harmonics and describe the multipolarity (angu-
lar momentum) of the surface. A few examples are shown in Figs. xxx, where we sketch the effects of
monopole (L = 0), dipole (L = 1), quadrupole (L = 2) and octupole (L = 3) modes. Let us investigate
these modes in turn, in the harmonic limit, where we look at small vibrations (small aLM) only.

Monopole

The monopole mode, see Fig. 5.5, is the one where the size of the nuclear fluid oscillates, i.e., where
the nucleus gets compressed. Experimentally one finds that the lowest excitation of this type, which in
even-even nuclei carries the quantum number Jπ = 0+, occurs at an energy of roughly

E0 ≈ 80A−1/3MeV (5.15)

above the ground state. Compared to ordinary nuclear modes, which have energies of a few MeV, these
are indeed high energy modes (15 MeV for A = 216), showing the incompressibility of the nuclear fluid.

Dipole

The dipole mode, Fig. 5.6, by itself is not very interesting: it corresponds to an overall translation of the
centre of the nuclear fluid. One can, however, imagine a two-fluid model where a proton and neutron
fluid oscillate against each other. This is a collective isovector (I = 1) mode. It has quantum numbers
Jπ = 1−, occurs at an energy of roughly

E0 ≈ 77A−1/3MeV (5.16)

above the ground state, close to the monopole resonance. It shows that the neutron and proton fluids
stick together quite strongly, and are hard to separate.
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Figure 5.7: Quadrupole fluctuations of a liquid drop

Figure 5.8: Octupole fluctuations of a liquid drop

Quadrupole

Quadrupole modes, see Fig. 5.7, are the dominant vibrational feature in almost all nuclei. The very special
properties of the lower multipolarities mean that these are the first modes available for low-energy exci-
tations in nuclei. In almost all even-even nuclei we find a low-lying state (at excitation energy of less than
1− 2MeV), which carries the quantum numbers Jπ = 2+, and near closed shells we can often distinguish
the second harmonic states as well (three states with quantum numbers Jπ = 0+, 2+, 4+) .

Octupole

Octupole modes, with Jπ = 3−, see Fig. 5.8, can be seen in many nuclei. In nuclei where shell-structure
makes quadrupole modes occur at very high energies, such as doubly magic nuclei, the octupole state is
often the lowest excited state.

5.2.4 Collective rotations

Once we have created a nucleus with axial deformation, i.e., a nucleus with ellipsoidal shape, but still
axial symmetry about one axis, we can rotate the fluid around one of the non-symmetry axes to generate
excitations, see Fig. 5.9. We cannot do it around a symmetry axis, since the resulting state would just
be the same quantum state as we started with, and therefore the energy cannot change. A rotated state
around a non-symmetry axis is a different quantum state, and therefore we can overlay many of these

Figure 5.9: Collective rotation of an axially deformed liquid drop
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Figure 5.10: symmetric (upper row) or asymmetric fission (lower row)

states, especially with constant rotational velocity. This is almost like the rotation of a dumbbell, and we
can predict the classical spectrum to be of the form

H =
1

2I J2, (5.17)

where J is the classical angular momentum. We predict a quantum mechanical spectrum of the form

Erot(J) =
h̄2

2I J(J + 1), (5.18)

where J is now the angular momentum quantum number. Naively we expect the spectrum to be more
compressed (the moment of inertial is larger) the more elongated the nucleus becomes. It is known that
certain structures in nuclei indeed describe well deformed nuclei, up to super and hyper deformed (axis
ratio from 1 : 1.2 to 1 : 2).

5.3 Fission

Once we have started to look at the liquid drop model, we can try to ask the question what it predicts
for fission, where one can use the liquid drop model to good effect. We are studying how a nuclear fluid
drop separates into two smaller ones, either about the same size, or very different in size.

This process is indicated in Fig. 5.10. The liquid drop elongates, by performing either a quadrupole or
octupole type vibration, but it persists until the nucleus falls apart into two pieces. Since the equilibrium
shape must be stable against small fluctuations, we find that the energy must go up near the spherical
form, as sketched in Fig. 5.11.

In that figure we sketch the energy - which is really the potential energy - for separation into two
fragments, R is the fragment distance. As with any of such processes we can either consider classical
fission decays for energy above the fission barrier, or quantum mechanical tunnelling for energies below
the barrier. The method used in fission bombs is to use the former, by hitting a 235U nucleus with a slow
neutron a state with energy above the barrier is formed, which fissions fast. The fission products are
unstable, and emit additional neutrons, which can give rise to a chain reaction.

The mass formula can be used to give an indication what is going on; Let us look at at the symmetric
fusion of a nucleus. In that case the Q value is

Q = M(A, Z)− 2M(A/2, Z/2) (5.19)

Please evaluate this for 236U (92 protons). The mass formula fails in predicting the asymmetry of fission,
the splitting process is much more likely to go into two unequal fragments.

Missing: Picture of asymmetric fusion.
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Figure 5.11: potential energy for fission

Figure 5.12: The potential energy for alpha decay

5.4 Barrier penetration

In order to understand quantum mechanical tunnelling in fission it makes sense to look at the simplest
fission process: the emission of a He nucleus, so called α radiation. The picture is as in Fig. 5.12.

Suppose there exists an α particle inside a nucleus at an (unbound) energy > 0. Since it isn’t bound,
why doesn’t it decay immediately? This must be tunnelling. In the sketch above we have once again
shown the nuclear binding potential as a square well, but we have included the Coulomb tail,

VCoulomb(r) =
(Z− 2)2e2

4πε0r
. (5.20)

. The height of the barrier is exactly the coulomb potential at the boundary, which is the nuclear radius,
RC = 1.2A1.3 fm, and thus BC = 2.4(Z− 2)A−1/3. The decay probability across a barrier can be given by
the simple integral expression P = e−2γ, with

γ =
(2µα)1/2

h̄

∫ b

RC

[V(r)− Eα]1/2dr

=
(2µα)1/2

h̄

∫ b

RC

[
2(Z− 2)e2

4πε0r
− Eα

]1/2

dr

=
2(Z− 2)e2

2πε0h̄v
[arccos(Eα/BC)− (Eα/BC)(1− Eα/BC)] , (5.21)
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(here v is the velocity associated with Eα). In the limit that BC � Eα we find

P = exp
[
−2(Z− 2)e2

2ε0h̄v

]
. (5.22)

This shows how sensitive the probability is to Z and v!



Chapter 6

Some basic concepts of theoretical
particle physics

We now come to the first hard part of the class. We’ll try to learn what insights we can gain from the
equation governing relativistic quantum mechanics.

6.1 The difference between relativistic and NR QM

One of the key points in particles physics is that special relativity plays a key rôle. As you all know, in
ordinary quantum mechanics we ignore relativity. Of course people attempted to generate equations for
relativistic theories soon after Schrödinger wrote down his equation. There are two such equations, one
called the Klein-Gordon and the other one called the Dirac equation.

The structure of the ordinary Schrödinger equation of a free particle (no potential) suggests what to
do. We can write this equation as

Ĥψ =
1

2m
p2ψ = ih̄

∂

∂t
ψ. (6.1)

This is clearly a statement of the non-relativistic energy-momentum relation, E = 1
2 mv2, since a time

derivative on a plane wave brings down a factor energy. Remember, however, that p as an operator also
contains derivatives,

p =
h̄
i
∇. (6.2)

A natural extension would to use the relativistic energy expression,

Ĥψ =
√

m2c4 + p2c2 ψ = ih̄
∂

∂t
ψ. (6.3)

But this is a nonsensical equation, unless we specify how to take the square root of the operator. The first
attempt to circumvent this problem, by Klein and Gordon, was to take the square of the equation,(

m2c4 + p2c2
)

ψ = −h̄2 ∂2

∂t2 ψ. (6.4)

This is an excellent equation for spin-less particles or spin one particles (bosons), but not to describe
fermions (half-integer spin), since there is no information about spin is in this equation. This needs careful
consideration, since spin must be an intrinsic part of a relativistic equation!

Dirac realised that there was a way to define the square root of the operator. The trick he used was to
define four matrices α, β that each have the property that their square is one, and that they anticommute,

αiαi = I, ββ = I,
αiβ + βαi = 0, αiαj + αjαi = 0 i 6= j. (6.5)
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This then leads to an equation that is linear in the momenta – and very well behaved,

(βmc2 + cα · p)Ψ = ih̄
∂

∂t
Ψ (6.6)

Note that the minimum dimension for the matrices in which we can satisfy all conditions is 4, and thus Ψ
is a four-vector! This is closely related to the fact that these particles have spin.

Let us investigate this equation a bit further. One of the possible forms of αi and β is

αi =
(

0 σi
σi 0

)
, β =

(
I 0
0 −I

)
, (6.7)

where σi are the two-by-two Pauli spin matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (6.8)

(These matrices satisfy some very interesting relations. For instance

σ1σ2 = iσ3, σ2σ1 = −iσ3, σ2σ3 = iσ1, (6.9)

etc. Furthermore σ2
i = 1.)

Once we know the matrices, we can try to study a plane-wave solution

Ψ(x, t) = u(p)ei(p·x−Et)/h̄. (6.10)

(Note that the exponent is a “Lorentz scalar”, it is independent of the Lorentz frame!).
If substitute this solution we find that u(p) satisfies the eigenvalue equation

mc2 0 p3c p1c− ip2c
0 mc2 p1c + ip2c −p3c

p3c p1c− ip2c −mc2 0
p1c + ip2c −p3c 0 −mc2




u1
u2
u3
u4

 = E


u1
u2
u3
u4

 . (6.11)

The eigenvalue problem can be solved easily, and we find the eigenvalue equation

(m2c4 + p2c2 − E2)2 = 0 (6.12)

which has the solutions E = ±
√

m2c4 + p2c2. The eigenvectors for the positive eigenvalues are
1
0

p3c/(E + mc2)
(p1c− ip2c)/(E + mc2)

 , and


0
1

(p1c + ip2c)/(E + mc2)
−p3c/(E + mc2)

 , (6.13)

with similar expressions for the two eigenvectors for the negative energy solutions. In the limit of small
momentum the positive-energy eigenvectors become

1
0
0
0

 , and


0
1
0
0

 , (6.14)

and seem to denote a particle with spin up and down. We shall show that the other two solutions are
related to the occurrence of anti-particles (positrons).

Just as photons are the best way to analyse (decompose) the electro-magnetic field, electrons and
positrons are the natural way way to decompose the Dirac field that is the general solution of the Dirac
equation. This analysis of a solution in terms of the particles it contains is called (incorrectly, for historical
reasons) “second quantisation”, and just means that there is a natural basis in which we can say there is a
state at energy E, which is either full or empty. This could more correctly be referred to as the “occupation
number representation” which should be familiar from condensed matter physics. This helps us to see
how a particle can be described by these wave equations. There is a remaining problem, however!
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6.2 Antiparticles

Both the Klein-Gordon and the Dirac equation have a really nasty property. Since the relativistic energy
relation is quadratic, both equations have, for every positive energy solution, a negative energy solution.
We don’t really wish to see such things, do we? Energies are always positive and this is a real problem.
The resolution is surprisingly simple, but also very profound – It requires us to look at the problem in a
very different light.

Figure 6.1: A schematic picture of the levels in the Dirac equation

In figure 6.1 we have sketched the solutions for the Dirac equation for a free particle. It has a positive
energy spectrum starting at mc2 (you cannot have a particle at lower energy), but also a negative energy
spectrum below −mc2. The interpretation of the positive energy states is natural – each state describes a
particle moving at an energy above mc2. Since we cannot have negative energy states, their interpretation
must be very different. The solution is simple: We assume that in an empty vacuum all negative energy
states are filled (the “Dirac sea”). Excitations relative to the vacuum can now be obtained by adding
particles at positive energies, or creating holes at negative energies. Creating a hole takes energy, so the
hole states appear at positive energies. They do have opposite charge to the particle states, and thus
would correspond to positrons! This shows a great similarity to the behaviour of semiconductors, as you
may well know. The situation is explained in figure 6.2.

Note that we have ignored the infinite charge of the vacuum (actually, we subtract it away assuming
a constant positive background charge.) Removing infinities from calculations is a frequent occurrence
in relativistic quantum theory (RQT). Many unmeasurable quantities become infinite, and we are only
interested in the finite part remaining after removing the infinities. This process is part of what is called
renormalisation, which is a systematic procedure to extract finite information from infinite answers!

6.3 QED: photon couples to e+e−

We know that electrons and positrons have charge and thus we need to include electrodynamics in the
relativistic quantum theory of the electron. That is even more clear when we take into account that an
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Figure 6.2: A schematic picture of the occupied and empty levels in the Dirac equation. The promotion
of a particle to an empty level corresponds to the creation of a positron-electron pair, and takes an energy
larger than 2mc2.

electron and positron can annihilate by emitting two photons (the well-known 511 keV lines),

e+e− → γγ. (6.15)

Question: Why not one photon?
There is a natural way to describe this coupling, in a so-called Lagrangian approach, which I shall not

discuss here. It teaches us that an electron can emit a photon, as indicated figure 6.3.
The diagrams in figure 6.3 are usually referred to as a Feynman diagrams, and the process depicted in

(a) is usually called Bremsstrahlung, the one in (b) annihilation. With such a diagram comes a recipe for
calculating it (called the Feynman rule). A key point is that energy and momentum are conserved in all
reactions. Let us look at what happens when another nearby electron absorbs the photon, as in figure 6.4

Of course there are two possibilities: The left electron can emit the photon to the right one, or absorb
one that is emitted by the right one. This is related to the time-ordering of interactions. One of the
advantages of Feynman diagrams is that both these possibilities are described in one Feynman diagram.
Thus the time in this diagram should only be interpreted in the sense of the external lines, what are the
particles in and out. It is also very economical if we have more and more particles emitted and absorbed.

Since the emitted photon only lives for a short time, ∆t = ∆x/c, its energy cannot be determined
exactly due to the uncertainty relation

∆E∆t ≥ h̄
2

. (6.16)

Thus even though the sum of the initial (four) momenta, k1 + k2 equals the sum of the final ones, k3 + k4,
we find that the photon does not have to satisfy

q2 = E2
q − q2 = 0. (6.17)

Such a photon is called virtual or “off mass-shell”, since it does not satisfy the mass-energy relations. This
is what gives rise to the Coulomb force.
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Figure 6.3: The Feynman diagrams for an electron and/or positrons interacting with a photon. Diagram
(a) is emission of a photon by an electron, (b) absorption. (c) and (d) are the same diagrams for positrons,
and (e) is pair creation, whereas (f) is annihilation.

6.4 Fluctuations of the vacuum

The great problem is in understanding the meaning of virtual particles. Suppose we are studying the
vacuum state in QED. We wish to describe this vacuum in terms of the states of no positrons, electrons and
photons (the naive vacuum). Since these particles interact we have short-lived states where e+e− pairs,
and photons, and .... appear for a short while and disappear again. This is also true for real particles: a
real electron is a “bare” electron surrounded by a cloud of virtual photons, e+e− pairs, etc. A photon can
be an e+e− pair part of the time, and more of such anomalies.

Figure 6.4: One of the Feynman diagrams for an electron-electron scattering.



54 CHAPTER 6. SOME BASIC CONCEPTS OF THEORETICAL PARTICLE PHYSICS

Figure 6.5: Some Feynman diagrams for “dressed propagators”.

6.4.1 Feynman diagrams

As I have sketched above, Feynman diagrams can be used to describe what is happening in these pro-
cesses. These describe the matrix elements, and the actual transition probability is proportional to the
square of this matrix elements. One can show that each electron-photon coupling vertex is proportional
to e, and thus in the square each vertex gives a factor e2. Actually by drawing time in the vertical direc-
tion and space in the horizontal (schematically, of course), we see that the the two possible couplings of
the photon to matter – Bremsstrahlung and pair creation are one and the same process. Still it helps to
distinguish. Note that at each vertex charge is conserved as well as momentum!

This can actually be combined into a dimensionless quantity

α =
e2

4πε0h̄c
≈ 1

137
. (6.18)

We should expand in α rather than e2 since expansion parameters, being “unphysical” can not have di-
mensions. In other words in order to carry through this mathematical concept the natural scale of a
diagram is set by the power of α it carries. Due to the smallness of α we normally consider only the dia-
grams with as few vertices as possible. Let me list the two diagrams for electron-positron scattering, both
proportional to α2, as given in figure 6.6.

Figure 6.6: The two Feynman diagrams for an electron-positron scattering.

Question: Why is there only one such diagram for e−e− scattering? Answer: Charge conservation.
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Figure 6.7: A higher order diagram for electron-positron scattering.

We can also construct higher order diagrams, as in figure 6.7.
We can also calculate the scattering of light by light, which only comes in at α4, see figure 6.8.

Figure 6.8: The lowest diagram for photon-photon scattering.

The sum of all diagrams contributing to a given process is called the perturbation series.

6.5 Infinities and renormalisation

One of the key features missing in the discussion above is the fact that all the pictures I have drawn are
infinite – somewhat of a severe blow. The key point is to understand that this is not a problem, but has to
do with a misinterpretation of the series.

When we introduce α and e in our theory these we use the measured value of the charge of an electron
– which is a solution to the full theory, not to the artificial problem with all vacuum fluctuations turned
of. What it means is that we should try to express all our answers in physically sensible (measurable)
quantities. Renormalisation is the mathematical procedure that does this. A theory (such as QED) is
called renormalisable if we can make all expressions finite by re-expressing them in a finite number of
physical parameters.
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6.6 The predictive power of QED

It is hard to say that a theory has predictive power without comparing it to experiment, so let me highlight
a few successes of QED.

One of those is the so-called g factor of the electron, related to the ratio of the spin and orbital con-
tributions to the magnetic moment. Relativistic theory (i.e., the Dirac equation) shows that g = 2. The
measured value differs from 2 by a little bit, a fact well accounted for in QED.

experiment g/2 = 1.00115965241(20)
Theory g/2 = 1.00115965238(26) (6.19)

Some of the errors in the theory are related to our knowledge of constants such as h̄, and require better
input. It is also clear that at some scale QCD (the theory of strong interactions) will start playing a rôle.
We are approaching that limit.

6.7 Problems

Example 6.1:

Discuss the number of different time-orderings of electron-positron scattering in lowest order
in α.



Chapter 7

The fundamental forces

The fundamental forces are normally divided in four groups, of the four so-called “fundamental” forces.
These are often naturally classified with respect to a dimensionless measure of their strength. To set these
dimensions we use h̄, c and the mass of the proton, mp. The natural classification is then given in table
7.1. Another important property is their range: the distance to which the interaction can be felt, and the
type of quantity they couple to. Let me look a little closer at each of these in turn.

Table 7.1: A summary of the four fundamental forces
Force Range Strength Acts on

Gravity ∞ GN ≈ 6 10−39 All particles (mass and energy)
Weak Force < 10−18m GF ≈ 1 10−5 Leptons, Hadrons

Electromagnetism ∞ α ≈ 1/137 All charged particles
Strong Force ≈ 10−15m g2 ≈ 1 Hadrons

In order to set the scale we need to express everything in a natural set of units. Three scales are
provided by h̄ and c and e – actually one usually works in units where these two quantities are 1 in high
energy physics. For the scale of mass we use the mass of the proton. In summary (for e = 1 we use
electron volt as natural unit of energy)

h̄ = 6.58× 10−22 MeV s (7.1)
h̄c = 1.97× 10−13 MeV m (7.2)

mp = 938 MeV/c2 (7.3)

7.1 Gravity

The theory of gravity can be looked at in two ways: The old fashioned Newtonian gravity, where the
potential is proportional to the rest mass of the particles,

V =
GNm1m2

r
. (7.4)

We find that GNm2
p/h̄c is dimensionless, and takes on the value

GNm2
p/h̄c = 5.9046486× 10−39. (7.5)

There are two more levels to look at gravity. One of those is Einstein’s theory of gravity, which in
the low-energy small-mass limit reduces to Newton’s theory. This is still a classical theory, of a classical
gravitational field.
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The quantum theory, where we re-express the field in their quanta has proven to be a very tough stum-
bling block – When one tries to generalise the approach taken for QED, every expression is infinite, and
one needs to define an infinite number of different infinite constants. This is not deemed to be acceptable
– i.e., it doesn’t define a theory. Such a model is called unrenormalisable. We may return to the problem
of quantum gravity later, time permitting.

7.2 Electromagnetism

Electro-magnetism, i.e., QED, has been discussed in some detail in the previous chapter. Look there for a
discussion. The coupling constant for the theory is

α =
e2

4πε0h̄c
. (7.6)

7.3 Weak Force

This manifests itself through nuclear β decay,

n → p + e− + νe. (7.7)

The standard coupling for this theory is called the Fermi coupling, GF, after its discoverer. After the theory
was introduced it was discovered that there were physical particles that mediate the weak force, the W±

and the Z0 bosons. These are very heavy particles (their mass is about 80 times the proton mass!), which
is why they have such a small range – fluctuations where I need to create that much mass are rare. The
W± bosons are charged, and the Z0 boson is neutral. The typical β decay referred to above is mediated
by a W− boson as can be seen in the Feynman diagram figure 7.1. The reason for this choice is that it
conserves charge at each point (the charge of a proton and a W− is zero, the charge of an electron and a
neutrino is -1, the same as that of a W−).

Figure 7.1: The Feynman diagram for the weak decay of a neutron.

7.4 Strong Force

The strong force is what keeps nuclei together. It is described by a theory called QCD, which described
the forces between fermions called quarks that make up the hadrons. These forces are mediated by spin-1
bosons called gluons. Notice that this is a case where a series in powers of the coupling constant does not
make a lot of sense, since higher powers have about the same value as lower powers. Such a theory is
called non-perturbative.



Chapter 8

Symmetries and particle physics

Symmetries in physics provide a great fascination to us – one of the hang-ups of mankind. We can recog-
nise a symmetry easily, and they provide a great tool to classify shapes and patterns. There is an important
area of mathematics called group theory, where one studies the transformations under which an object is
symmetric. In order to make this statement seem less abstract, let me look at a simple example, a regular
hexagon in a plane. As can be seen in figure Fig. 8.5, this object is symmetric (i.e., we can’t distinguish
the new from the old object) under rotations around centre over angles of a multiple of 60◦, and under
reflection in any of the six axes sketched in the second part of the figure.

Figure 8.1: The symmetries of a hexagon

8.1 Importance of symmetries: Noether’s theorem

There are important physical consequences of symmetries in physics, especially if the dynamics of a
system is invariant under a symmetry transformation.

There is a theorem, due to Emily Noether, one of the most important (female) mathematicians of this
century, that states that for any continuous symmetry there is a conserved quantity.

So what is a continuous symmetry? Think about something like spherical symmetry – a sphere is
invariant under any rotation about its centre, no matter what the rotation angle. The continuity of choice
of parameter in a transformation is what makes the set of transformations continuous. Another way of
saying the same thing is that the transformation can be arbitrarily close to the unit transformation, i.e., it
can do almost nothing at all.
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8.2 Lorenz and Poincaré invariance

One of the most common continuous symmetries of a relativistic theory is Lorentz invariance, i.e., the
dynamics is the same in any Lorentz frame. The group of Lorentz transformations can be decomposed
into two parts: Pictures!

• Boosts, where we go from one Lorentz frame to another, i.e., we change the velocity.

• Rotations, where we change the orientation of the coordinate frame.

There is a slightly larger group of symmetries, called the Poincaré group, obtained when we add transla-
tions to the set of symmetries – clearly the dynamics doesn’t care where we put the orbit of space.

The set of conserved quantities associated with this group is large. Translational and boost invari-
ance implies conservation of four momentum, and rotational invariance implies conservation of angular
momentum.

8.3 Internal and space-time symmetries

Above I have mentioned angular momentum, the vector product of position and momentum. This is
defined in terms of properties of space (or to be more generous, of space-time). But we know that many
particles carry the spin of the particle to form the total angular momentum,

J = L + S. (8.1)

The invariance of the dynamics is such that J is the conserved quantity, which means that we should not
just rotate in ordinary space, but in the abstract “intrinsic space” where S is defined. This is something
that will occur several times again, where a symmetry has a combination of a space-time and intrinsic
part.

8.4 Discrete Symmetries

Let us first look at the key discrete symmetries – parity P (space inversion) charge conjugation C and
time-reversal T.

8.4.1 Parity P

Parity is the transformation where we reflect each point in the origin, x → −x. This transformation should
be familiar to you. Let us think of the one dimensional harmonic oscillator, with Hamiltonian

− h̄2

2m
d

dx2 + 1
2 mω2x2. (8.2)

The Hamiltonian does not change under the substitution x → −x. The well-known eigenstates to this
problem are either even or odd under this transformation, see Fig. 8.2, and thus have either even or odd
parity,

Pψ(x, t) = ψ(−x, t) = ±ψ(x, t), (8.3)

where P is the transformation that take x → −x. For

Pψ(x, t) = ψ(x, t) (8.4)

we say that the state has even parity, for the minus sign we speak about negative parity. These are the
only two allowed eigenvalues, as can be seen from looking at the probability density |ψ(x, y)|2. Since this
must be invariant, we find that

|ψ(x, y)|2 = |Pψ(x, y)|2 (8.5)
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Figure 8.2: The first four harmonic oscillator wave functions

which shows that the only real eigenvalues for P are ±1. One can show that there is a relation between
parity and the orbital angular momentum quantum number L, π = (−1)L, which relates two space-time
symmetries.

It is found, however, that parity also has an intrinsic part, which is associated with each type of parti-
cle. A photon (γ) has negative parity. This can be understood from the following classical analogy. When
we look at Maxwell’s equation for the electric field,

∇ · E(x, t) =
1
ε0

ρ(x, t), (8.6)

we find that upon reversal of the coordinates this equation becomes

−∇ · E(−x, t) =
1
ε0

ρ(−x, t). (8.7)

The additional minus sign, which originates in the change of sign of ∇ is what gives the electric field and
thus the photon its negative intrinsic parity.

We shall also wish to understand the parity of particles and antiparticles. For fermions (electrons,
protons, . . . ) we have the interesting relation Pf Pf̄ = −1, which will come in handy later!

8.4.2 Charge conjugation C

The name of this symmetry is somewhat of a misnomer. Originally it stems from QED, where it was
found that a set of interacting electrons behaves exactly the same way as a similar set of positrons. So if
we change the sign of all charges the dynamics is the same. Actually, the symmetry generalises a little bit,
and in general refers to a transformation where we change all particles in their antiparticles.

Once again we find C2 = 1, and the only possible eigenvalues of this symmetry are ±1. An uncharged
particle like the photon that is its own antiparticle, must be an eigenstate of the symmetry operation, and
it is found that it has eigenvalue −1,

Cψγ = −ψγ. (8.8)

(Here ψγ is the wave function of the photon.) This can be shown from Maxwell’s equation (8.6) as before,
since ρ changes sign under charge conjugation.

For a combination of a particle and an antiparticle, we find that C f C f̄ = −1 for fermions, and +1 for
bosons.
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8.4.3 Time reversal T

On a microscopic scale it is not very apparent whether time runs forward or backwards, the dynamics
where we just change the sign of time is equally valid as the original one. This corresponds to flipping
the sign of all momenta in a Feynman diagram, so that incoming particles become outgoing particles and
vice-versa. This symmetry is slightly nastier, and acts on both space-time and intrinsic quantities such as
spin in a complicated way. The space time part is found to be

Tψ(r, t) = ψ∗(r,−t). (8.9)

Combined with its intrinsic part we find that it has eigenvalues ±i for fermions (electrons, etc.) and ±1
for bosons (photons, etc.).

8.5 The CPT Theorem

A little thought shows that all three symmetries mentioned above appear very natural – but that is a
theorist’s argument. The real key test is experiment, not a theorist’s nice ideas! In 1956 C.N. Yang and T.D.
Lee analysed the experimental evidence for these symmetries. They realised there was good evidence of
these symmetries in QED and QCD (the theory of strong interactions). There was no evidence that parity
was a symmetry of the weak interactions – which was true, since it was shown soon thereafter that these
symmetries are broken, in a beautiful experiment led by “Madame” C.S. Wu.

There is a fairly strong proof that only minimal physical assumptions (locality, causality) that the
product of C, P and T is a good symmetry of any theory. Up to now experiment has not shown any
breaking of this product. We would have to rethink a lot of basic physics if this symmetry is not present. I
am reasonably confident that if breaking is ever found there will be ten models that can describe it within
a month!

8.6 CP violation

The first experimental confirmation of symmetry breaking was found when studying the β− decay of
60Co,

60Co → 60Ni + e− + ν̄e. (8.10)

This nucleus has a ground state with non-zero spin, which can be oriented in a magnetic field.
A magnetic field is a pseudo-vector, which means that under parity it goes over into itself B → B. So

does the spin of the nucleus, and we thus have established that under parity the situation under which the
nucleus emits electrons should be invariant. But the direction in which they are emitted changes! Thus
any asymmetry between the emission of electrons parallel and anti-parallel to the field implies parity
breaking, as sketched in figure 8.3.

Actually one can shown that to high accuracy that the product of C and P is conserved, as can be seen
in figure 8.4.

8.7 Continuous symmetries

8.7.1 Translations

8.7.2 Rotations

8.7.3 Further study of rotational symmetry

Rotational transformations on a wave function can be applied by performing the transformation

exp[i(θx Ĵx + θy Ĵy + θz Ĵz)] (8.11)
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Figure 8.3: Parity breaking for the β decay of 60Co

Figure 8.4: CP symmetry for the β decay of 60Co

on a wave function. This is slightly simpler for a particle without spin, since we shall only have to consider
the orbital angular momentum,

L̂ = p̂× r = ih̄r ×∇. (8.12)

Notice that this is still very complicated, exponentials of operators are not easy to deal with. One of the
lessons we learn from applying this operator to many different states, is that if a state has good angular
momentum J, the rotation can transform it into another state of angular momentum J, but it will never
change the angular momentum. This is most easily seen by labelling the states by J, M:[

Ĵ2
x + Ĵ2

y + Ĵ2
z

]
φJM = h̄2 J(J + 1)φJM (8.13)

Ĵ2
z φJM = MφJM (8.14)

The quantum number M can take the values −J,−J + 1, . . . , J − 1, J, so that we typically have 2J + 1
components for each J. The effect of the exponential transformation on a linear combination of states
of identical J is to perform a linear transformation between these components. I shall show in a minute
that such transformation can be implemented by unitary matrices. The transformations that implement
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these transformations are said to correspond to an irreducible representation of the rotation group (often
denoted by SO(3)).

Let us look at the simplest example, for spin 1/2. We have two states, one with spin up and one with
spin down, ψ±. If the initial state is ψ = α+ψ+ + α−ψ−, the effect of a rotation can only be to turn this
into ψ′ = α′+ψ+ + α′−ψ−. Since the transformation is linear (if I rotate the sum of two objects, I might as
well rotate both of them) we find (

α′+
α′−

)
=

(
U++ U−+
U+− U−−

) (
α′+
α′−

)
(8.15)

Since the transformation can not change the length of the vector, we must have
∫
|ψ′|2 = 1. Assuming∫

|ψ±|2 = 1,
∫

ψ∗+ψ− = 0 we find
U†U = 1 (8.16)

with

U† =
(

U∗
++ U∗

+−
U∗
−+ U∗

−−

)
(8.17)

the so-called hermitian conjugate.
We can write down matrices that in the space of S = 1/2 states behave the same as the angular

momentum operators. These are half the well known Pauli matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (8.18)

and thus we find that
U(θ) = exp[i(θxσx/2 + θyσy/2 + θzσz/2)]. (8.19)

I don’t really want to discuss how to evaluate the exponent of a matrix, apart from one special case.
Suppose we perform a 2π rotation around the z axis, θ = (0, 0, 2π). We find

U(0, 0, 2π) = exp[iπ
(

1 0
0 −1

)
]. (8.20)

Since this matrix is diagonal, we just have to evaluate the exponents for each of the entries (this corre-
sponds to using the Taylor series of the exponential),

U(0, 0, 2π) =
(

exp[iπ] 0
0 exp[−iπ]

)
=

(
−1 0
0 −1

)
. (8.21)

To our surprise this does not take me back to where I started from. Let me make a small demonstration
to show what this means.........

Finally what happens if we combine states from two irreducible representations? Let me analyse this
for two spin 1/2 states,

ψ = (α1
+ψ1

+ + α1
−ψ1

−)(α2
+ψ2

+ + α2
−ψ2

−)

= α1
+α2

+ψ1
+ψ2

+ + α1
+α2

−ψ1
+ψ2

− + α1
−α2

+ψ1
−ψ2

+α1
−α2

−ψ1
−ψ2

−. (8.22)

The first and the last product of ψ states have an angular momentum component ±1 in the z direction,
and must does at least have J = 1. The middle two combinations with both have M = M1 + M2 = 0 can
be shown to be a combination of a J = 1, M = 0 and a J = 0, M = 0 state. Specifically,

1√
2

[
ψ1

+ψ2
− − ψ1

−ψ2
+

]
(8.23)
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transforms as a scalar, it goes over into itself. the way to see that is to use the fact that these states
transform with the same U, and substitute these matrices. The result is proportional to where we started
from. Notice that the triplet (S = 1) is symmetric under interchange of the two particles, whereas the
singlet (S = 0) is antisymmetric. This relation between symmetry can be exhibited as in the diagrams Fig.
??, where the horizontal direction denotes symmetry, and the vertical direction denotes antisymmetry.
This technique works for all unitary groups.....

Figure 8.5: The Young tableau for the multiplication 1/2× 1/2 = 0 + 1.

The coupling of angular momenta is normally performed through Clebsch-Gordan coefficients, as
denoted by

〈j1m1 j2m2|JM〉 . (8.24)

We know that M = m1 + m2. Further analysis shows that J can take on all values |j1 − j2|, |j1 − j2| +
1, |j1 − j2|+ 2, j1 + j2.

8.8 symmetries and selection rules

We shall often use the exact symmetries discussed up till now to determine what is and isn’t allowed. Let
us, for instance, look at

8.9 Representations of SU(3) and multiplication rules

A very important group is SU(3), since it is related to the colour carried by the quarks, the basic building
blocks of QCD.

The transformations within SU(3) are all those amongst a vector consisting of three complex objects
that conserve the length of the vector. These are all three-by-three unitary matrices, which act on the
complex vector ψ by

ψ → Uψ

=

 U11 U12 U13
U21 U22 U23
U31 U32 U33

  ψ1
ψ2
ψ3

 (8.25)

The complex conjugate vector can be shown to transform as

ψ∗ → ψ∗U†, (8.26)

with the inverse of the matrix. Clearly the fundamental representation of the group, where the matrices
representing the transformation are just the matrix transformations, the vectors have length 3. The rep-
resentation is usually labelled by its number of basis elements as 3. The one the transforms under the
inverse matrices is usually denoted by 3̄.

What happens if we combine two of these objects, ψ and χ∗? It is easy to see that the inner product of
ψ and χ∗ is scalar,

χ∗ · ψ → χ∗U†Uψ = χ∗ · ψ, (8.27)

where we have used the unitary properties of the matrices the remaining 8 components can all be shown
to transform amongst themselves, and we write

3⊗ 3̄ = 1⊕ 8. (8.28)
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Of further interest is the product of three of these vectors,

3⊗ 3⊗ 3 = 1⊕ 8⊕ 8⊕ 10. (8.29)

8.10 broken symmetries

Of course one cannot propose a symmetry, discover that it is not realised in nature (“the symmetry is
broken”), and expect that we learn something from that about the physics that is going on. But parity
is broken, and we still find it a useful symmetry! That has to do with the manner in which it is broken,
only weak interactions – the exchange of W± and Z bosons – break them. Any process mediated by
strong, electromagnetic or (probably) gravitational forces conserves the symmetry. This is one example
of a symmetry that is only mildly broken, i.e., where the conserved quantities are still recognisable, even
though they are not exactly conserved.

In modern particle physics the way symmetries are broken teaches us a lot about the underlying
physics, and it is one of the goals of grand-unified theories (GUTs) to try and understand this.

8.11 Gauge symmetries

One of the things I will not say much about, but which needs to be mentioned, is of a certain class of
local symmetries (i.e., symmetries of the theory at each point in space and time) called gauge symmetries.
This is a key idea in almost all modern particle physics theories, so much so that they are usually labelled
by the local symmetry group. Local symmetries are not directly observable, and do not have immediate
consequences. They allow for a mathematically consistent and simple formulation of the theories, and in
the end predict the particle that are exchanged – the gauge particles, as summarised in table 8.1.

Table 8.1: The four fundamental forces and their gauge particles

Gravitation graviton(?)
QED photon
Weak W±, Z0

Strong gluons



Chapter 9

Symmetries of the theory of strong
interactions

The first time people realised the key role of symmetries was in the plethora of particles discovered using
the first accelerators. Many of those were composite particle (to be explained later) bound by the strong
interaction.

9.1 The first symmetry: isospin

The first particles that show an interesting symmetry are actually the nucleon and the proton. Their
masses are remarkably close,

Mp = 939.566 MeV/c2 Mn = 938.272 MeV/c2. (9.1)

If we assume that these masses are generated by the strong interaction there is more than a hint of sym-
metry here. Further indications come from the pions: they come in three charge states, and once again
their masses are remarkably similar,

Mπ+ = Mπ− = 139.567 MeV/c2, Mπ0 = 134.974 MeV/c2. (9.2)

This symmetry is reinforced by the discovery that the interactions between nucleon (p and n) is indepen-
dent of charge, they only depend on the nucleon character of these particles – the strong interactions see
only one nucleon and one pion. Clearly a continuous transformation between the nucleons and between
the pions is a symmetry. The symmetry that was proposed (by Wigner) is an internal symmetry like spin
symmetry called isotopic spin or isospin. It is an abstract rotation in isotopic space, and leads to similar
type of states with isotopic spin I = 1/2, 1, 3/2, . . .. One can define the third component of isospin as

Q = e(I3 + B), (9.3)

where B is the baryon number (B = 1 for n, p, 0 for π). We thus find

B Q/e I I3
n 1 0 1/2 −1/2
p 1 1 1/2 1/2
π− 0 −1 1 −1
π0 0 0 1 0
π+ 0 1 1 1

(9.4)

Notice that the energy levels of these particles are split by a magnetic force, as ordinary spins split under
a magnetic force.
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9.2 Strange particles

In 1947 the British physicists Rochester and Butler (from across the street) observed new particles in
cosmic ray events. (Cosmic rays where the tool before accelerators existed – they are still used due to the
unbelievably violent processes taking place in the cosmos. We just can’t produce particles like that in the
lab. (Un)fortunately the number of highly energetic particles is very low, and we won’t see many events.)
These particles came in two forms: a neutral one that decayed into a π+ and a π−, and a positively charge
one that decayed into a µ+ (heavy electron) and a photon, as sketched in figure 9.1.

π
+

π
−

V
0

V
+

+
µ

γ

Figure 9.1: The decay of V particles

The big surprise about these particles was how long they lived. There are many decay time scales, but
typically the decay times due to strong interactions are very fast, of the order of a femto second (10−15 s).
The decay time of the K mesons was about 10−10 s, much more typical of a weak decay. Many similar
particles have since been found, both of mesonic and baryonic type (like pions or like nucleons). These
are collectively know as strange particles. Actually, using accelerators it was found that strange particles
are typically formed in pairs, e.g.,

π+ + p → Λ0︸︷︷︸
baryon

+ K0︸︷︷︸ meson (9.5)

This mechanism was called associated production, and is highly suggestive of an additive conserved
quantity, such as charge, called strangeness. If we assume that the Λ0 has strangeness −1, and the K0 +1,
this balances

π+ + p → Λ0 + K0 (9.6)
0 + 0 = −1 + 1 (9.7)

The weak decay

Λ0 → π− + p (9.8)
−1 6= 0 + 0, (9.9)

does not conserve strangeness (but it conserves baryon number). This process is indeed found to take
much longer, about 10−10 s.

Actually it is found (by analysing many resonance particles) that we can accommodate this quantity
in our definition of isospin,

Q = e(I3 +
B + S

2
) (9.10)
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Clearly for S = −1 and B = 1 we get a particle with I3 = 0. This allows us to identify the Λ0 as an
I = 0, I3=0 particle, which agrees with the fact that there are no particles of different charge and a similar
mass and strong interaction properties.

The kaons come in three charge states K±, K0 with masses mK± = 494 MeV, mK0 = 498 MeV. In
similarity with pions, which form an I = 1 multiplet, we would like to assume a I = 1 multiplet of K’s as
well. This is problematic since we have to assume S = 1 for all these particles: we cannot satisfy

Q = e(I3 +
1
2
) (9.11)

for isospin 1 particles. The other possibility I = 3/2 doesn’t fit with only three particles. Further analysis
shows that the the K+ is the antiparticle of K−, but K0 is not its own antiparticle (which is true for the
pions. So we need four particles, and the assignments are S = 1, I = 1/2 for K0 and K−, S = −1, I = 1/2
for K+ and K̄0. Actually, we now realise that we can summarise all the information about K’s and π’s in
one multiplet, suggestive of a (pretty badly broken!) symmetry.

Figure 9.2: a possible arrangement for the states of the septet

However, it is hard to find a sensible symmetry that gives a 7-dimensional multiplet. It was argued
by Gell-Mann and Ne’eman in 1961 that a natural extension of isospin symmetry would be an SU(3)
symmetry. We have argued before that one of the simplest representations of SU(3) is 8 dimensional
symmetry. A mathematical analysis shows that what is missing is a particle with I = I3 = S = 0. Such
a particle is known, and is called the η0. The breaking of the symmetry can be seen from the following
mass table:

mπ± = 139 MeV
mπ0 = 134 MeV
mK± = 494 MeV
m(−)

K0
= 498 MeV

mη0 = 549 MeV

(9.12)

The resulting multiplet is often represented like in figure 9.3.
In order to have the scheme make sense we need to show its predictive power. This was done by

studying the nucleons and their excited states. Since nucleons have baryon number one, they are labelled
with the “hyper-charge” Y,

Y = (B + S), (9.13)
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Figure 9.3: Octet of mesons

rather than S. The nucleons form an octet with the single-strangeness particles Λ and σ and the doubly-
strange cascade particle Ξ, see figure 9.4.

Figure 9.4: Octet of nucleons

The masses are

Mn = 938 MeV
Mp = 939 MeV

MΛ0 = 1115 MeV
MΣ+ = 1189 MeV
MΣ0 = 1193 MeV
MΣ− = 1197 MeV
MΞ0 = 1315 MeV
MΞ− = 1321 MeV

All these particles were known before the idea of this symmetry. The first confirmation came when study-
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ing the excited states of the nucleon. Nine states were easily incorporated in a decuplet, and the tenth state
(the Ω−, with strangeness -3) was predicted. It was found soon afterwards at the predicted value of the
mass.

Figure 9.5: decuplet of excited nucleons

The masses are

M∆ = 1232 MeV
MΣ∗ = 1385 MeV
MΞ∗ = 1530 MeV
MΩ = 1672 MeV

(Notice almost that we can fit these masses as a linear function in Y, as can be seen in figure 9.6. This was
of great help in finding the Ω.)
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Figure 9.6: A linear fit to the mass of the decuplet
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Table 9.1: The properties of the three quarks.

Quark label spin Q/e I I3 S B
Up u 1

2 + 2
3

1
2 + 1

2 0 1
3

Down d 1
2 − 1

3
1
2 - 1

2 0 1
3

Strange s 1
2 − 1

3 0 0 -1 1
3

9.3 The quark model of strong interactions

Once the eightfold way (as the SU(3) symmetry was poetically referred to) was discovered, the race was
on to explain it. As I have shown before the decaplet and two octets occur in the product

3⊗ 3⊗ 3 = 1⊕ 8⊕ 8⊕ 10. (9.14)

A very natural assumption is to introduce a new particle that comes in three “flavours” called up, down
and strange (u, d and s, respectively), and assume that the baryons are made from three of such particles,
and the mesons from a quark and anti-quark (remember, 3⊗ 3̄ = 1⊕ 8.) Each of these quarks carries one
third a unit of baryon number. The properties can now be tabulated, see table 9.2.

In the multiplet language I used before, we find that the quarks form a triangle, as given in Fig. 9.7.

Figure 9.7: The multiplet structure of quarks and antiquarks

Once we have made this assignment, we can try to derive what combination corresponds to the as-
signments of the meson octet, figure 9.8. We just make all possible combinations of a quark and antiquark,
apart from the scalar one η′ = uū + dd̄ + cc̄ (why?).

A similar assignment can be made for the nucleon octet, and the nucleon decaplet, see e.g., see Fig.
9.9.

9.4 SU(4), . . .

Once we have three flavours of quarks, we can ask the question whether more flavours exists. At the
moment we know of three generations of quarks, corresponding to three generations (pairs). These give
rise to SU(4), SU(5), SU(6) flavour symmetries. Since the quarks get heavier and heavier, the symmetries
get more-and-more broken as we add flavours.
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Figure 9.8: quark assignment of the meson octet

Figure 9.9: quark assignment of the nucleon octet

9.5 Colour symmetry

So why don’t we see fractional charges in nature? This is an important point! In so-called deep inelastic
scattering we see pips inside the nucleon – these have been identified as the quarks. We do not see any
direct signature of individual quarks. Furthermore, if quarks are fermions, as they are spin 1/2 particles,
what about antisymmetry of their wavefunction? Let us investigate the ∆++, see Fig. 9.10, which consists
of three u quarks with identical spin and flavour (isospin) and symmetric spatial wavefunction,

ψtotal = ψspace × ψspin × ψflavour. (9.15)

This would be symmetric under interchange, which is unacceptable. Actually there is a simple solution.
We “just” assume that there is an additional quantity called colour, and take the colour wave function to
be antisymmetric:

ψtotal = ψspace × ψspin × ψflavour × ψcolour (9.16)

We assume that quarks come in three colours. This naturally leads to yet another SU(3) symmetry, which
is actually related to the gauge symmetry of strong interactions, QCD. So we have shifted the question to:
why can’t we see coloured particles?
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Table 9.2: The properties of the three quarks.

Quark label spin Q/e mass (GEV/c2)
Down d 1

2 − 1
3 0.35

Up u 1
2 + 2

3 0.35
Strange s 1

2 − 1
3 0.5

Charm c 1
2 + 2

3 1.5
Bottom b 1

2 − 1
3 4.5

Top t 1
2 + 2

3 93

Figure 9.10: The ∆++ in the quark model.

This is a deep and very interesting problem. The only particles that have been seen are colour neutral
(“white”) ones. This leads to the assumption of confinement – We cannot liberate coloured particles at
“low” energies and temperatures! The question whether they are free at higher energies is an interesting
question, and is currently under experimental consideration.

9.6 The Feynman diagrams of QCD

There are two key features that distinguish QCD from QED:

1. Quarks interact more strongly the further they are apart, and more weakly as they are close by –
asymptotic freedom.

2. Gluons interact with themselves

The first point can only be found through detailed mathematical analysis. It means that free quarks can’t
be seen, but at high energies quarks look more and more like free particles. The second statement make
QCD so hard to solve. The gluon comes in 8 colour combinations (since it carries a colour and anti-colour
index, minus the scalar combination). The relevant diagrams are sketches in Figure 9.11. Try to work out
yourself how we satisfy colour charge conservation!
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Figure 9.11: The basic building blocks for QCD Feynman diagrams

9.7 Jets and QCD

One way to see quarks is to use the fact that we can liberate quarks for a short time, at high energy scales.
One such process is e+e− → qq̄, which use the fact that a photon can couple directly to qq̄. The quarks
don’t live very long and decay by producing a “jet” a shower of particles that results from the decay of
the quarks. These are all “hadrons”, mesons and baryons, since they must couple through the strong
interaction. By determining the energy in each if the two jets we can discover the energy of the initial
quarks, and see whether QCD makes sense.
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Chapter 10

Relativistic kinematics

One of the features of particle physics is the importance of special relativity. This occurs at a very fun-
damental level, since particle physics is all about creating and annihilating particles. This can only occur
if we can convert mass to energy and vice-versa. Thus Einstein’s idea of the equivalence between mass
and energy plays an extremely fundamental rôle in this field of physics. In order for this to be possible
we typically need processes that occur at velocities near the light velocity c, so that the kinematics (i.e.,
the description of momenta and energy) of these processes requires relativity. In this chapter we shall
succinctly introduce the few necessary concepts – I hope that for most of you this is a review, but this
chapter is intended to be self-contained and contains everything I shall need in relativistic kinematics.

10.1 Lorentz transformations of energy and momentum

As you may know, like we can combine position and time in one four-vector x = (x, ct), we can also
combine energy and momentum in a single four-vector, p = (p, E/c). From the Lorentz transformation
property of time and position, for a change of velocity along the x-axis from a coordinate system at rest
to one that is moving with velocity v = (vx, 0, 0) we have

x′ = γ(v)(x− v/ct), t′ = γ(t− xvx/c2), (10.1)

we can derive that energy and momentum behave in the same way,

p′x = γ(v)(px − Ev/c2) = muxγ(|u|),

E′ = γ(v)(E− vpx) = γ(|u|)m0c2. (10.2)

To understand the context of these equations remember the definition of γ

γ(v) = 1/
√

1− β2, β =
v
c

. (10.3)

In Eq. (10.2) we have also re-expressed the momentum energy in terms of a velocity u. This is measured
relative to the rest system of a particle, the system where the three-momentum p = 0.

Now all these exercises would be interesting mathematics but rather futile if there was no further
information. We know however that the full four-momentum is conserved, i.e., if we have two particles
coming into a collision and two coming out, the sum of four-momenta before and after is equal,

Ein
1 + Ein

2 = Eout
1 + Eout

2 ,

pin
1 + pin

2 = pout
1 + pout

2 . (10.4)

77
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10.2 Invariant mass

One of the key numbers we can extract from mass and momentum is the invariant mass, a number inde-
pendent of the Lorentz frame we are in

W2c4 = (∑
i

Ei)2 − (∑
i

pi)
2c2. (10.5)

This quantity takes it most transparent form in the centre-of-mass, where ∑i pi = 0. In that case

W = ECM/c2, (10.6)

and is thus, apart from the factor 1/c2, nothing but the energy in the CM frame. For a single particle
W = m0, the rest mass.

Most considerations about processes in high energy physics are greatly simplified by concentrating on
the invariant mass. This removes the Lorentz-frame dependence of writing four momenta. I

As an example we look at the collision of a proton and an antiproton at rest, where we produce
two quanta of electromagnetic radiation (γ’s), see fig. 10.1, where the anti proton has three-momentum
(p, 0, 0), and the proton is at rest.

Figure 10.1: A sketch of a collision between a proton with velocity v and an antiproton at rest producing
two gamma quanta.

The four-momenta are

pp = (plab, 0, 0,
√

m2
pc4 + p2

labc2)

pp̄ = (0, 0, 0, mpc2). (10.7)

From this we find the invariant mass

W =
√

2m2
p + 2mp

√
m2

p + p2
lab/c2 (10.8)

If the initial momentum is much larger than mp, more accurately

plab � mpc, (10.9)

we find that
W ≈

√
2mp plab/c, (10.10)

which energy needs to be shared between the two photons, in equal parts. We could also have chosen to
work in the CM frame, where the calculations get a lot easier.
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10.3 Transformations between CM and lab frame

Even though the use of the invariant mass simplifies calculations considerably, it clearly does not provide
all necessary information. It does suggest however, that a natural frame to analyse reactions is the CM
frame. Often we shall analyse a process in this frame, and use a Lorentz transformation to get information
about processes in the laboratory frame. Since almost all processes involve the scattering (deflection) of
one particle by another (or a number of others), this is natural example for such a procedure, see the
sketch in Fig. 10.2. The same procedure can also be applied to the case of production of particles, such as
the annihilation process discussed above.

Figure 10.2: A sketch of a collision between two particles

Before the collision the beam particle moves with four-momentum

pb = (plab, 0, 0,
√

m2
bc4 + p2

labc2) (10.11)

and the target particle mt is at rest,
pt = (0, 0, 0, mtc2). (10.12)

We first need to determine the velocity v of the Lorentz transformation that bring is to the centre-of-mass
frame. We use the Lorentz transformation rules for momenta to find that in a Lorentz frame moving with
velocity v along the x-axis relative to the CM frame we have

p′bx = γ(v)(plab − vElab/c2)
p′tx = −mtvγ(v). (10.13)

Sine in the CM frame these numbers must be equal in size but opposite in sign, we find a linear equation
for v, with solution

v =
plab

mt + Elab/c2 ≈ c
(

1− mt

plab

)
. (10.14)

Now if we know the momentum of the beam particle in the CM frame after collision,

(p f cos θCM, p f sin θCM, 0, E′f ), (10.15)

where θCM is the CM scattering angle we can use the inverse Lorentz transformation, with velocity −v, to
try and find the lab momentum and scattering angle,

γ(v)(p f cos θCM + vE′f /c2) = p f lab cos θlab

p f sin θCM = p f lab sin θlab, (10.16)

from which we conclude

tan θlab =
1

γ(v)
p f sin θCM

p f cos θCM + vE′f /c2 . (10.17)
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Of course in experimental situations we shall often wish to transform from lab to CM frames, which can
be done with equal ease.

To understand some of the practical consequences we need to look at the ultra-relativistic limit, where
plab � m/c. In that case v ≈ c, and γ(v) ≈ (plab/2mtc2)1/2. This leads to

tan θlab ≈

√
2mtc2

plab

u sin θC
u cos θC + c

(10.18)

Here u is the velocity of the particle in the CM frame. This function is always strongly peaked in the
forward direction unless u ≈ c and cos θC ≈ −1.

10.4 Elastic-inelastic

Figure 10.3: A sketch of a collision between two particles

We shall often be interested in cases where we transfer both energy and momentum from one particle
to another, i.e., we have inelastic collisions where particles change their character – e.g., their rest-mass. If
we have, as in Fig. 10.3, two particles with energy-momentum k1 and pq coming in, and two with k2 and
p2 coming out, We know that since energy and momenta are conserved, that k1 + p1 = k2 + p2, which can
be rearranged to give

p2 = p1 + q, k2 = k1 − q. (10.19)

and shows energy and momentum getting transferred. This picture will occur quite often!

10.5 Problems

Example 10.1:

Suppose a pion decays into a muon and a neutrino,

π+ = µ+ + νµ. (10.20)

Express the momentum of the muon and the neutrino in terms of the mass of pion and muon.
Assume that the neutrino mass is zero, and that the pion is at rest. Calculate the momentum
using mπ+ = 139.6 MeV/c2, mµ = 105.7 MeV/c2.
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Example 10.2:

Calculate the lowest energy at which a Λ(1115) can be produced in a collision of (negative)
pions with protons at rest, throught the reaction π− + p → K0 + Λ. mπ− = 139.6 MeV/c2,
mp = 938.3 MeV/c2, mK0 = 497.7 MeV/c2. (Hint: the mass of the Λ is 1115 MeV/c2.)

Example 10.3:

a) Find the maximum value for v such that the relativisitic energy can be expressed by

E ≈ mc2 +
p2

2m
, (10.21)

with an error of one procent.
b) find the minimum value of v and γ so that the relativisitic energy can be expressed by

E ≈ pc, (10.22)

again with an error of one percent.
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