For \mathop{sin}\nolimits (ϕ) > 0 the integrand goes to
zero very quickly with R, but for
ϕ=0 we enter a grey territory, where the
integrand decays like 1∕R. If we move the
original integral up by just a little bit (ϵ)
we are OK, since ϕ
doesn’t become zero. Thus
{\mathop{\mathop{\mathop{∫
}\nolimits }}\nolimits }_{−∞}^{∞} {{e}^{ikx}\over
i − x}\kern 1.66702pt dx ={\mathop{ \mathop{\mathop{∫
}\nolimits }}\nolimits }_{−∞+iϵ}^{∞+iϵ} {{e}^{ikz}\over
i − z}\kern 1.66702pt dz = \mathop{∮
}\nolimits {{e}^{ikz}\over
i − z}dz
(A.15)
The residue is easily seen to be R = −{e}^{−k},
and thus