Workshop 10, Week 10

Please follow the instructions of your supervisor regarding timing of these problems.

Math Review

- **1.** * Find the angle between the two vectors $\mathbf{a} = (1, 0, 2)$ and $\mathbf{b} = (2, 2, 2)$.
- 2. * Find a unit vector orthogonal to both $\mathbf{a} = (1, 0, 2)$ and $\mathbf{b} = (2, 2, 2)$.

Physics Problems

- 3. * Calculate the total mass of a 1m bar (cross section $2 \times 2 \text{ cm}^2$) of an unevenly mixed alloy, where the density changes linearly from 10 kg/m³ at one end to 20 kg/m³ at the other.
- 4. The moment of inertia of an object, consisting of a number of point masses, relative to an axis is defined as $\mathcal{I} = \sum_i m_i r_i^2$, where r_i is the perpendicular distance of the point *i* to the axis.

(i) Generalise this expression to a volume of revolution (where the mass distribution is continuous) assuming a constant density ρ .

(ii) We construct a top by rotating the curve $y = 3/2 - x^2$, $-1 \le x \le 0$, y = 3/2 - 3/2x, $0 \le x \le 1$, around the *x* axis. Calculate its mass and moment of inertia around the *x*-axis.

5. We look at the electric field around a charged, infinitely long, insulating wire. Assume that the charge density is given by σ . Find the electric field (magnitude and direction) at a point a distance *R* from the wire (i) Through the addition of all the electric fields (field due to a charge *q*:

 $\mathbf{E} = -kq\mathbf{r}/r^3).$

(ii) Through the calculation of the total potential (V = kq/r).

Maths Practice

6. Evaluate the following integrals

(i) *
$$\int \frac{1}{1-5x+6x^2} dx$$
 , (ii) $\int \frac{1}{u^2(a+bu)} du$,
(iii) * $\int_0^1 \frac{dx}{1-2x+2x^2}$, (iv) $\int_{-1}^1 \frac{x^2+3x+1}{(x+2)^2(x+3)^2} dx$.

7. Evaluate the following integrals:

(i) *
$$\int \frac{dx}{\sqrt{7+4x-4x^2}}$$
, (ii)
$$\int \frac{\sqrt{x-1}}{x} dx$$
,
(iii) *
$$\int \frac{x}{\sqrt{1+2x-x^2}} dx$$
.

- 8. Find the areas between the curves. In each case make a sketch of the region.
 - (i) * $y = x^3$; $y = x^2$. (ii) $y = \frac{4}{x^2}$; $y = 5 - x^2$ (x > 0).
 - (iii) Below $y = e^{-x} \sin(x)$ and above y = 0 from x = 0 to $x = \pi$.
 - (iv) Inside both of the circles $x^2 + y^2 = 1$ and $x^2 + (y 1)^2 = 1$.

9. Find the volumes of revolution when the region R is rotated about the *x*-axis:

- (i) * *R* is bounded by y = x(2 x) and y = 0 between x = 0 and x = 2.
- (ii) *R* is bounded by $y = 1/(1 + x^2)$, y = 2, x = 0 and x = 1.
- (iii) *R* is bounded by $y = e^{-x}$ and y = 0 and lies to the right of x = 0.