Workshop 4, Week 4

Please follow the instructions of your supervisor regarding timing of these problems.

Maths Review

1. Sketch the polar curves

(i) *
$$r = 2\theta$$
, (ii) * $r = 1/(1 - \cos(\theta))$,

Physics Problems

- 2. * A particle of mass 1g resides at the point (1,1,3), a particle of mass 2g is at (1,4,5) and one of 5g at (-2,-1,0). Find the position vector of the centre of mass.
- 3. * Three charges, $q_1 = 4.0 \ \mu\text{C}$, $q_2 = -6.0 \ \mu\text{C}$, $q_3 = -5.0 \ \mu\text{C}$, are placed in the *xy* plane.

The distance between charges 1 and 2 is $r_{12} = 0.10$ m, $r_{13} = 0.15$ m, and the angle between r_{12} and r_{13} is 73°. Find the force (size and direction) on charge 1. (Use $k = 1/(4\pi\epsilon_0) = 9 \times 10^9$ Nm²/C².)

4. * A cube has sides of length 1m which are parallel to the unit vectors **i**, **j**, **k**. A force **F** of size 2 N acts parallel to the body-diagonal AD of the cube.

Show that

$$\mathbf{F} = \frac{2}{\sqrt{3}}(\mathbf{i} + \mathbf{j} + \mathbf{k})$$

Find the work done by **F** as it moves from A to D along the paths: (i) AD (ii) AB then BD (iii) AB then BC then CD. 5. A truck of mass 4000 kg is parked on a slope that makes an angle of $\pi/4$ with the horizontal. Find

(i) The force exerted by the road.

(ii) The handbrake is released. Find the acceleration of the truck.

(iii) A bomb is exploded under the truck. Calculate the force required to give the truck an acceleration of *g* perpendicular to the road.

6. A small car of mass 950 kg travels eastwards, and collides with a car of mass 1900 kg traveling to the north. After the collision the wreckage sticks together and slides with a speed of 16.0 m/s in a direction 24° east of north. Calculate the speed of each vehicle before the collision (ignore friction).

Math Practice

7. * Let $\mathbf{a} = (1, 2, -3)$ and $\mathbf{b} = (2, 0, 1)$. Find:

(i)	a + b,	(ii)	$\mathbf{a} - \mathbf{b}$,
(iii)	The length of a ,	(iv)	The length of b ,
(v)	a · b,	(vi)	The angle between a and b .

8. Given
$$\mathbf{a} = \mathbf{i} + \mathbf{j} - 2\mathbf{k}$$
, $\mathbf{b} = 2\mathbf{i} + \mathbf{j} + 3\mathbf{k}$, $\mathbf{c} = \mathbf{i} - \mathbf{j}$, find

- (i) $\mathbf{a} + \mathbf{b} + \mathbf{c}$,
- (ii) $(\mathbf{a} \cdot \mathbf{b})\mathbf{c}$,
- (iii) $(\mathbf{a} \mathbf{b}) \cdot (\mathbf{a} \mathbf{c})$,
- (iv) Find the magnitudes of **a**, **b** and **c**,
- (v) and the angle between **a** and **b**.

Reading for next week: Chapter 5 (Trigonometric functions)