Workshop 7, Week 7

Please follow the instructions of your supervisor regarding timing of these problems.

Math Practice

1. Solve the following for *x*

(i) *
$$-4 \exp(x/4) + \exp(x/2) = -4$$
,
ii) * $\ln(1/(1+x^{1/2})) - \ln(y^{1/3}) = 2$.

Physics Problems

2. A planet of mass *m* moves under the influence of the gravitational force of the sun (mass *M*), $\mathbf{F} = -\frac{GmM}{r^2}\mathbf{r}$.

(i) * Show that the angular momentum, $\mathbf{L} = m\mathbf{r} \times \mathbf{v}$, is constant in time. **Hint:** Note that $\mathbf{r} = \mathbf{r}(t)$, and express the acceleration in terms of \mathbf{r} . (ii) [**Hard**!] Show that the motion takes place in a plane that contains the origin.

Hint: Find the vector equation of such a plane!

- 3. * A closed cylindrical container is to be constructed with volume 16π m³, but to avoid using too much metal, the total surface area must be minimal. What are the dimensions of the cylinder?
- 4. Planck's radiation law say that the intensity of light emitted by a star (black body) of temperature *T* is

$$I(\lambda) = rac{2\pi hc^2}{\lambda^5 (e^{hc/(\lambda kT)} - 1)}.$$

Find the extremum of this curve as a function of *T*, and sketch the shape of the curve for a suitable temperature of 5000 K ($h = 6.6260755 \times 10^{-34}$ Js, c = 299792458 m/s, $k = 1.380658 \times 10^{-23}$ J K).

Maths Practice

- 5. * Differentiate $(a^2 + \sin^2(\omega t))^{1/2}$ with respect to *t*.
- 6. For x from -4 to 4 find the smallest and largest values of $x^3 3x^2 9x 10$. Sketch the curve.

7. Using logarithmic differentiation, find dy/dx for

i)*
$$y = (x+1)^2 (x+2)^3 (x+3)^4$$
, (ii) $y = \sqrt{(3x^2+2)} \sqrt{(6x-7)}$.

8. By implicit differentiation, find dy/dx when

(i)*
$$x^2 + y^2 + xy - 17 = 0$$
, (ii) $x^2y^3 - x^2 + 3y - 3 = 0$.

Also find d^2y/dx^2 for (i).

- 9. Find dy/dx and d^2y/dx^2 for $x = 5 + \sin t$; $y = 3 \cos t$ at $t = \pi/4$.
- 10. The function $\cosh(x)$ is defined as $\cosh(x) = \frac{1}{2}(e^x + e^{-x})$, and $\sinh(x)$ as $\sinh(x) = \frac{1}{2}(e^x e^{-x})$. Find the derivative of the inverse function $\cosh^{-1}(x)$.

Reading for next week: Chapter 11 (Introducing scalars and vectors)