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Introduction

Here you find the lecture notes for the first semester of the course “Mathematics for Physicsists”. These
notes are terse, but should cover more-or-less what has been said in class. You can use them as a guide to
the material you are expected to be able to deal with, and we give ample reference to the two textbooks
(Lambourne and Tinker, “Basic Mathematics for the Physical Sciences”, denoted as 1.xxx, and Tinker and
Lambourne, “Further Mathematics for the Physical Sciences”, denoted as 2.xxxx). You’ll notice that we
jump through those books in a rather random order, but your are expected to read up on those parts that
you find difficult, or are not covered in enough detail in the notes.

Niels Walet, Manchester, 2002
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Chapter 1

Introduction

1.1 Why mathematics for physics?

At first you may ask yourself the question why combine mathematica and physics, if they can be taught
as almost fully independent subjects in your A-level courses.

The answer is of course “because they are taught as independent subjects”! Much of mathematics –
most of the calculus and algebra discussed in this course – was originally developped to deal with the
problems arising from the development of physics in the 18th and 19th century. Actually, it was often
hard to distinguish a mathematician from a physicist!

1.2 Mathematics as the language for physics

That brings us automatically to our next subject, the fact that part of mathematics was developped to
describe real-world problems, and thus is the natural language of physics. Let us study this issue by
looking at a number of examples.
Example 1.1:

Describe the motion of a particle under a constant force

Solution:

Example 1.2:

Discuss the equilibrium of forces in a spiders web.

Solution:

Example 1.3:

Solution:

1
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Chapter 2

Revision

2.1 Powers, logs, exponentials

L&T, 1..6

2.1.1 Powers

L&T, 1..1.2.4

Here we summarise the properties of the powers.

2.1.2 The product of two powers

First of all the product of two powers,
axay = ax+y , (2.1)

e.g., 3236 = 38, and 31/233/2 = 32 (we see that x and y do not have to be integers (whole numbers)).
Question: Evaluate 57/1053/10.

The power of a power

If we take the power of a power, we multiply the exponents,

(ax)y = axy (2.2)

e.g., (23)2 = 82 = 64 = 23×2 = 26 = 64. This again works for x, y not integers. Question: Evaluate
21/443/8.

Relation with roots

If the exponent is 1/n we are taking the nth root of a,

a1/n = n
√

a, (2.3)

e.g., 2
1
2 =

√
2, 2

1
3 = 3

√
2. If x = a

1
n then xn = a. This can be shown by taking both sides to the power n,

xn = (a1/n)
n

= a1 = a.

The number n is often taken to be an integer, but it does not have to be. (E.g., (31/9.5)9.5 = 3.)

3
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Figure 2.1: A plot of the exponential exp(x) and exp(−x).

Zeroth power of a number

If we take a number to the power zero, we find

a0 = 1 for any a > 0. (2.4)

This follows from a0ax = ax+0 = ax, and therefore a0 = 1. (Note that there is a slight problem with 00:
0x = 0 for x > 0. One usually defines 00 = 1.)

Negative powers and fractions

If we take a number to a negative power, we write the result as a fraction involving a positive power,

a−x =
1
ax (2.5)

since a−xax = a−x+x = a0 = 1. Therefore a−x = 1
ax . E.g., 2−1 = 1/2.

Common error

Remember that
ax+y = axay CORRECT!!!, (2.6)

and not
ax+y 6= ax + ay WRONG!!! (2.7)

As an example, 23+5 = 28 = 64, but 23 + 25 = 8 + 32 = 40.

2.1.3 Exponential Function

L&T, 1..6.2

The exponential function is a special case of a power, where y = ex, with e = 2.71828.... (Euler’s number).
One also writes exp(x) instead of ex.

As we can see from Fig. 2.1, ex is never less than 0 for any x. From the properties of powers we know
that e−x = 1

ex . This function is also shown in Fig. 2.1, and is positive as well.
Differential (derivative w.r.t. x) of ex is ex, i.e.,

dex

dx
= ex .
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Figure 2.2: A plot of the natural logarithm ln(x) and its derivative 1/x.

(This is the only function with the property that the derivative equals the function itself.)
If y = eax then dy

dx = aeax (this is a form of the chain rule, which will be discussed later), e.g., if y = 3e7x

then dy
dx = 3× 7e7x = 21e7x.

Example 2.1:

Discuss exponential growth/decay.

Solution:

Exponential growth or decay is ruled by the form N(t) = N0eat. For a < 0 we have decay,

for a > 0 we have growth. From the derivative,
dN
dt

(t) = N0aeat = aN(t) we see that this
arrises when the change in N is proportional to the number present. Examples are population
growth, radioactive deay, . . . .

2.1.4 The Logarithmic Function

L&T, 1..6.3

Relation between Logs and Exponentials

L&T, 1..6.3.1

The inverse f−1 of a function f is defined such that if y = f (x), then x = f−1(y).

The functions ln(x) and exp(x) are the inverse functions of each other. This means that if y = ln(x) then
x = ey. The reverse is also true: if x = ey then y = ln(x). Clearly it follows that, using these relations,

exp(ln x) = eln x = ey = x,
ln(exp y) = ln(ey) = ln x = y.

A graph of the logarithm is shown in Fig. 2.2. If we swap the x and y axes, we recognise the exponen-
tial. Normally we use logs to base e (inverse of ex)- called natural logarithms, hence the name ln(x), but
we also write

log(x) = ln(x) .
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Logs to other bases

L&T, 1..6.3.2

Just as y = ln x ⇒ x = ey for the logarithm corresponding to base e (i.e., the inverse of ex) for other bases
we have y = logax ⇒ x = ay. Here we use the notation that if we mean log to base, say, 10 we write
log10(x), i.e., if y = log10(x), x = 10y.

It may help you to remember that a logarithm tries to extract a power from a number, e.g. the log1 0
extract the power of 10 from a number.

Change of base

Using this we can change from one base to another. Let y = log10x, then x = 10y. Now let b = ln 10
(or log 10), so 10 = eb. Therefore x = (eb)y = eby, so by = ln x, y = ln x

b = ln x
ln 10 . Hence log10x = ln x

ln 10 .
Question: Determine α such that log10(x) = α log2(x).

Differential of ln x

If y = ln x then
dy
dx

=
1
x

.

(Remember that the differential of ln x is 1/x, not the integral! This is a common error!)

Log of a product

Using the fact that ex1 ex2 = ex1+x2 , i.e., the product of exponents is the exponent of the sum, we con-
clude that the inverse relation holds for logarithms. Thus, the logarithm of a product is the sum of the
logarithms,

ln(y1y2) = ln(ex1 ex2) = ln ex1+x2 = x1 + x2.

Example 2.2:

The magnitude of a start is defined as m = log10(I/I0). Explain how I changes if m increase
by one unit.

Solution:

The new intensity satisfies log10(Inew/I0) = log10(Iold/I0) + 1. Using the properties of the
logarithms, we find that

log10(Inew/I0) = log10(Iold/I0) + log10 10

log10(Inew/I0) = log10(10Iold/I0)

(Inew/I0) = (10Iold/I0)

Inew = 10Iold

Example 2.3:

An unresolved doube-star has magnitude 7. Find the individual magnitudes, assuming that
both stars have the same one.

Solution:

Since intensities add up, we have 7 = log10(2I/I0) = log10(2) + log1 0(I/I0) = log10(2) + m.
Thus we conclude that m = 7− log10(2) = 6.69897.
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Figure 2.3: A plot of the sine and cosine.
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Figure 2.4: A plot of the tangent and cotangent.

2.2 Trigonometric functions

L&T, 1.5.3.1

Trigonometric functions are the sine (sin(x)), cosine (cos(x)), tangent (tan(x) = sin(x)/ cos(x)), cotan-
gent (cot(x) = 1/ tan(x)), secans (sec(x) = 1/ cos(x)) and cosecans (cosec(x) = 1/ sin(x)).

2.2.1 Trigonometric identities

L&T, 1.5.3.2

We shall assume that you are familiar with the sine and cosine of the sum of two angles,

sin(A + B) = sin A cos B + cos A sin B, (2.8)
cos(A + B) = cos A cos B− sin A cos B. (2.9)

We also expect you to know that
cos2 θ + sin2 θ = 1 (2.10)

for all θ. Substitute A = B in Eq. (2.8), and find sin 2A = sin A cos A + cos A sin A, and thus

sin 2A = 2 sin A cos A. (2.11)
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sec(x)
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Figure 2.5: A plot of the secans and cosecans.

In (2.9) put B = A, cos 2A = cos A cos A− sin A sin A, so

cos 2A = cos2 A− sin2 A. (2.12a)

However from (2.10) we have sin2 A = 1− cos2 A so we can rewrite (2.12a) as

cos 2A = cos2 A− (1− cos2 A) = 2 cos2 A− 1. (2.12b)

Similarly (left as exercise)
cos 2A = 1− 2 sin2 A. (2.12c)

Example 2.4:

Evaluate cos(75◦).

Solution:

cos(75◦) = cos(45◦ + 30◦) = cos 45◦ cos 30◦ − sin 45◦ sin 30◦

=
1√
2

√
3

2
− 1√

2
1
2

=
√

3− 1
2
√

2
= 0.2588 .

Note: We shall use radians more often than degrees, 180◦ = π radians, so

A◦ =
A× π

180
radians.

E.g., cos 45◦ = cos π
4 , sin 30◦ = sin π

6 . Usually, if there is no degree sign (◦) then the angle is specified in
radians.

Example 2.5:

Show from the equations above that

tan 2A =
2 tan A

1− tan2 A
.

Hint:

tan 2A = sin 2A
cos 2A .
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Other formulae

You will sometimes need other formulae such as

sin A + sin B = 2 sin(
A + B

2
) cos(

A− B
2

)

(there are four of these), and

2 sin A cos B = sin(A + B) + sin(A− B)

(there are three of these).
One formula you may not have seen before is

a sin x + b cos x = R sin(x + φ).

To find R and φ we use formula (2.8)and find

a sin x + b cos x = R[sin x cos φ + cos x sin φ] = R cos φ sin x + R sin φ cos x .

We equate the coefficient of sin x and cos x on both sides of the equation, and find

a = R cos φ, b = R sin φ .

Therefore
a2 + b2 = R2cos2φR2 + sin2φ = R2,

and thus

R =
√

a2 + b2 .

We also find
b/a =

R sin φ

R cos φ
= tan φ,

so
tan φ =

b
a

and
φ = tan−1(b/a).

(tan−1 will be discussed later.)
Example 2.6:

Express 3 sin x + 2 cos x in the form R sin(x + φ).

Solution:

We find R cos φ = 3, R sin φ = 2, R2 cos2 φ = 9, R2 sin2 φ = 9 , R2(cos2 φ + sin2 φ) = 9 + 4 =
13. Therefore R2 = 13, R =

√
13. Also (R sin φ)/(R cos φ) = 2/3, and thus tan φ = 2/3,

φ = tan−1(2/3) = arctan(2/3) = 0.588 radians = 33.7◦.

Let’s end with a physics example.
Example 2.7:

From astronomical data tables (e.g. http://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html) we
know that we can we can observe an apparent diameter of the planet mars between 3.5 and
25.7 arcseconds. Given the radius of the planet (3390 km), evaluate the distance of closest
approach as well as the largest distance to earth.

Solution:
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Figure 2.6: The angle under which we see Mars.

-1 0 1
x

-3π/2

-π

-π/2

0

π/2

π

3π/2

y

arcsin(x)
arccos(x)

Figure 2.7: A plot of the inverse of the sine and cosine.

This is a simple trig problem, and it helps (as always) to draw a picture, see Fig. 2.6. From
that picture we see that with distance d, radius r, the angle under which we see mars satisfies
tan(φ/2) = d/R. Actually, for the small angles under consideration tan(x) = x, if we express
x in radians. Thus

d = 2R/phi .

Realizing there are 3600 arcseconds in a degree (60 second in a minute, 60 minutes in a degree),
we find that we find that

d = 2R3600180/(πphi) .

Substituting the values given we find a distance of closest approach of 6.38859× 107 km and
a largest distance of 4.69105× 108 km

2.2.2 Inverse Trig Functions

L&T, 1.5.3.3

arcsin

The two alternative forms y = sin−1(x) or y = arcsin(x) indicate that y is an angle whose sine is x.
Example 2.8:

Find sin−1(1) and sin−1(1/2).

Solution:

y = sin−1(1) means sin(y) = 1. Therefore y = 90◦ = π/2 rads.
y = sin−1(1/2) means sin(y) = 1/2, and thus y = 30◦ = π/6 rads.

Note: sin 30◦ = 1/2, and sin 150◦ = 1/2, and sin 390◦ = 1/2, etc., so sin−1(x) is a multivalued function.
We need extra information, e.g., from the engineering situation or common sense to say which angle we
are looking at.
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Figure 2.8: A plot of the inverse tangent and cotangent.

The equation y = sin−1(x) means the same as x = sin y, (graph of y = sin x but with axis switched), note
−1 ≤ x ≤ 1.
Note: sin−1(x) is not the same as 1

sin x = sin(x)−1! The notation is very poor here but unfortunately very
widely used. arcsin x would be better but not too common!

arccos

Similarly y = cos−1 x = arccos x means cos y = x. Once again, −1 ≤ x ≤ 1.

arctan

y = tan−1x = arctan x means tan y = x.
Example 2.9:

Find x given 2 cos x = sin x.

Solution:

Divide by cos x: 2 = tan x, or x = tan−1(2).

2.3 Polar Coordinates

L&T, 1.9.3.3

The position of any point P in two-dimensional space can be specified by giving its (x, y) coordinates.
However we could also say where P is by giving the distance from the origin 0, and the direction we need
to go.

These two quantities are the polar coordinates (r, θ) of P. From a right angled triangle we see that
r cos θ = x, and r sin θ = y, so x2 + y2 = r2cos2θ + r2sin2θ = r2, and thus r =

√
x2 + y2. (N.B. We always

take positive square root here!) Also y
x = r sin θ

r cos θ = tan θ, Therefore θ = tan−1(y/x). In this case we must
always draw a diagram. The reason is that two different angles can have the same tangent. The only
relevant once for polar coordinates are that tan θ1 = tan θ2, when θ2 = 180◦ + θ1 = π + θ1. If P is in first
or second quadrant we use θ1, and if P is in third or fourth quadrant we use θ2. So always draw a little
sketch!
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Figure 2.9: The meaning of polar coordinates.

Figure 2.10: A sketch of (-1,-1) and polar coordinates.

Example 2.10:

Find the polar coordinates corresponding to x = −1, y = −1.

Solution:

r =
√

12 + 12 =
√

2, and tan θ = y/x = −1
−1 = 1. From the sketch we see that θ = 225◦ = 5π

4

2.3.1 Polar curves

Often we wish to draw curves in polar coordinates; the most important example are the Kepler orbits, the
ones resulting from a particle moving in the gravitational fiels of a single orbit, e.g., a single planet/comet
orbiting the sun.

The Kepler orbits can be shown to take the form

r−1 = R−1
0 (1 + ε cos(φ− φ′))

Here R0 is a quantity with unit length, determined from masses and gravitational parameters. We now
use this relation (with φ′ = 0, for simplicity) to find the typical orbits for ε = 0, |ε| < 1 (we shall choose
−1/2), |ε| = 1, and |ε| > 1 (we shall choose 2).

In order to plot these results we rewrite the relation as

r/R0 = 1/(1 + ε cos φ) ,

and plot the value of r for each φ (or a suitably chosen selection).

ε = 0

This is a circle.
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Figure 2.11: The Keplerian ellipse obtained for ε = −1/2.
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Figure 2.12: The Keplerian parabola obtained for ε = 1.

ε = −1/2

In this case it is not very hard to solve the problem: All values of φ give a positive r, and the easiest solution
is just to plot a suitable large number of values. Obvious choices are φ = 0, π/6, π/4, π/3, π/2, . . ., and
these immediately lead to the elliptical structure shown in Fig. 2.11. It can be shown that this is a real
ellipse, with the origin (the sun around which the palnet revolves) as one of the focusses of the ellipse.

ε = 1

In this case we cannot use φ = π, and we thus conclude that the curve moves away to infinity. Once again
we can draw a large number of points and we find a parabola, see Fig. 2.12.

ε = 2

We need to carefully find the allowed range for φ, see Fig. 2.13, and we conclude that−2π/2 < φ < 2π/3.
Near the end points r diverges, and we can actually expand the value of r in the behaviour near these two
points (Callenge question: how?) to find the two asymptotes y = ±

(
2/
√

3−
√

3x
)

, which as we can see
from Fig. 2.14 are indeed correct. The curve obtained is a hyperbola.



14 CHAPTER 2. REVISION

Π

2
Π

3 Π
2

2 Π
x

-1

1

2

3
y

Figure 2.13: The range where r is positive for ε = 2.
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Figure 2.14: The Keplerian hyperbola obtained for ε = 2.



Chapter 3

Vectors in 2-space and 3-space

3.1 solid geometry

In a 3-dimensional world we have to consider 3-dimensional coordinate geometry rather than 2-dimensional.
First of all we set up a set of 3 mutually orthogonal coordinate axes, usually labeled x, y and z, see

Fig. 3.1.
The z of axis is called right-handed, using the cork-screw rule: when rotating from x to y the z-axis is

in the up direction. We can specify any point p by its coordinates (x, y, z). From 2D geometry we know
that OQ2 = x2 + y2. Thus

OP2 = OQ2 + z2 = x2 + y2 + z2.

If we call, as is conventional, OP = r, then

r2 = x2 + y2 + z2.

3.2 Vectors and vector arithmetic

3.2.1 What is a vector?

In order to understand what a vector is we must distinguish carefully between:

Figure 3.1: 3d geometry

15
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Scalars: These are specified by (i) their units, and (ii) the number of units. Together we refer to this as their
magnitude. Examples are length, density, time, temperature, speed, etc.

Vectors: These are specified by (i) their units, (ii) the number of units and (iii) a direction. Examples are
velocity, acceleration, force, heat flux, etc.

A short word about notation: we shall use the notation
−→
AB for a vector pointing from A to B, and a

for an abstract vector. These notations do not agree with Stroud, but are standard practice! For handwriting,
where we cannot write a boldface letter, we shall use an underline (a = a) to denote the boldface.

3.2.2 Graphical representation

Figure 3.2: A vector represented by a directed line segment

We often represent a vector by a line-segment pointing from a point A to a point B, so that it has both
direction an length, see Fig. 3.2. The length of the segment AB gives the magnitude and the arrow specifies
the direction. The vector

−→
AB is often called a displacement vector, since, unlike an abstract vector, it has

a begin- and end-point. We say that the displacement vector
−→
AB represents the abstract vector a if the

direction and magnitude agree.

3.2.3 Equality and line of action

Figure 3.3: The representatives of two equal vectors.

Two vectors F1 and F2 are equal if they have the same magnitude (including units!) and direction,
even if their representatives do not act along the same line, see Fig. 3.3: A vector can be moved parallel to
itself without changing its value.

The line along which the vector points is called the line of action.
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Figure 3.4: The negative of a vector.

3.2.4 Negative of a vector

We shall often use the negative of a vector. The vector −F is defined as a vector of the same magnitude as
F, but pointing in the opposite direction, see Fig. 3.4. If F is represented by

−→
AB, or loosely (i.e., equality

denotes “is represented by”) F =
−→
AB, then −F =

−→
BA.

3.2.5 magnitude of a vector

We use as special notation for the magnitude: AB, |−→AB| or |a| or a. This is a scalar describing the length
of the vector, and is therefore always positive. It does carry the same units, however.

3.2.6 Multiplication by a scalar

�

��

Figure 3.5: A vector, and twice the same vector.

Given a scalar a and a vector F, then aF is a vector of the magnitude |a|F and the same direction as F
if a is positive, and oposite to F if a is negative, see Fig. 3.5. Thus 1 · F = F, −1 · F = −F.

3.2.7 Unit vectors

Unit vectors have magnitude 1 (they are dimensionless, i.e., mathematical objects). We often define unit
vectors associated with a physical vector. If n is a unit vector in the direction of a vector F, then, using
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Figure 3.6: Addition of two vectors

Figure 3.7: order of addition of two vectors

our laws of mutiplication, the vector F = Fn, since the factors on both sides have the same direction and
magnitude. From this we learn that

n =
F
F

,

a relation used frequently.

3.3 Vector Addition

Addition of vectors is achieved by moving the starting point of the second vector to coincide with the
endpoint of the first.

3.3.1 Triangle Law

Thus, as shown in Fig. 3.6 the displacement vectors are aligned, and we have
−→
AB +

−→
BC =

−→
AC. If the

displacements represent a, b, and c, respectively we see that a + b = c, or “changing sides” c = a + b.
This is called the triangle law of addition. It is used by always drawing displacement vectors that connect
in the order of the addition. I.e., in the addition above the endpoint of the representative of a coinides
with the start point of the vector b. The sum vector is often called the resultant.

3.3.2 Parallelogram Law

If we investigate both a + b and b + a, as shown in Fig. 3.7, we discover that the displacement vectors
form the four sides of a parallelogram (parallelogram law), as well as the fact that the order of addition
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Figure 3.8: Addition of several vectors

Figure 3.9: Associativity of addition

doesn’t matter (commutativity):

a + b = b + a .

3.3.3 General Addition

If we wish to add several vectors, we repeat the procedure sketched for two vectors, putting all of them
end to beginning,

−→
AB +

−→
BC +

−→
CD +

−→
DE +

−→
EF =

−→
AF.

3.3.4 Associativity

For number we know that they have the associative property, (a + b) + c = a + (b + c). Let us investigate
graphically whether such a relation holds for vectors. As we see from Fig. 3.9, this can be written in terms
of displacement vectors as

−→
AC +

−→
CD =

−→
AB +

−→
CD, an obvious truth.

3.3.5 Closed sets of vectors: null vector

If we add together a set of vectors that returns to the starting point (a closed set of vectors), see Fig. 3.10,
−→
AB +

−→
BC +

−→
CA =

−→
AA = 0, we get a zero length vector (the null vector, see below).
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Figure 3.10: a closed set of vectors

��

�� �

� �

Figure 3.11: Components of a vector in two dimensions.

3.3.6 Subtraction of vectors

If we subtract two vectors, we reverse the one with the minus sign (i.e., reverse the direction of the arrow
on that vector) and use the rules for addition, a− b = a + (−b).

3.3.7 Zero or Null Vector

In subtraction if b = a then a − a = 0 (zero or null vector). All null vectors are regarded as equal with
zero magnitude but no natural direction. 0 + a = a + 0 = a for any vector a.

3.4 Vectors: Component Form

3.4.1 Components in 2 dimensions

We look at a general vector r =
−→
OA +

−→
OB =

−→
OA +

−→
AC, see Fig. 3.11, which is decomposed into the sum

of two vectors along the x and y axes. We define i as a unit vector in the x-direction, and j as a unit vector
in y-direction. So

−→
OA = xi,

−→
OB = yj. Thus

r = xi + yj, |r| =
√

(x2 + y2),

where x and y are the components of r in the x and y directions. The vecor r as represented by the vector
−→
OB is called a coordinate vector.

3.4.2 Vectors in 3 dimensions

As shown in Fig. 3.12, the result in three dimensions is quite similar. Let i, j, k be the right-handed set of
unit vectors in the x, y, z direction, respectively. [A set of vectors is called right-handed if, when turning a
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Figure 3.12: Components of a vector in three dimensions.

corkscrew from the first to the second vector, it moves in the direction of the third.] Thus

r =
−→
OP =

−→
OC +

−→
CP =

−→
OA +

−→
AC +

−→
CP

= xi + yj + zk,

where x, y and z are the components of r.
We shall often use the notation (p1, p2, p3) for a vector p = p1i + p2j = p3k. Once again the vectors

r and p were given as position vectors, the displacement vector for the point P starting from the origin.
Using pythagoras’ theorem repeatedly we see that r2 = x2 + y2 + z2, and thus |r| =

√
x2 + y2 + z2.

3.4.3 Sum and Difference of vectors in Component Form

Let

r1 = x1i + y1j + z1k ,
r2 = x2i + y2j + z2k ,

then

r1 + r2 = (x1 + x2)i + (y1 + y2)j + (z1 + z2)k ,
r1 − r2 = (x1 − x2)i + (y1 − y2)j + (z1 − z2)k .

(please verify these geometrically for 2 dimensional space)
Example 3.1:

Given the points A = (1,−4, 2) and B = (2, 2,−3), find the component from for the vector
−→
AB.

Solution:

We realise that
−→
OB =

−→
OA +

−→
AB, or,

−→
OB−−→

OA =
−→
AB. We thus find that

−→
AB = (i − 4j + 2k)−

(2i− 2j− k) = (1− 2)i + (−4 + 2)j + (2 + 1)k = −i + 2j + 3k.

3.4.4 Unit vectors

We study
−→
OP = r = xi + yj + zk or r = (x, y, z), |r| = r.Then the unit vector in the direction of r is

r̂ = r/r = x/ri + y/rj + z/rk,

Clearly |r̂| = x2+y2+z2

r2 = 1.



22 CHAPTER 3. VECTORS IN 2-SPACE AND 3-SPACE

Example 3.2:

If r = 8i + 4j− k find r, r̂ and the direction cosines (dc’s) of r.

Solution:

r = |r| =
√

82 + 42 + (−1)2 =
√

81 = 9 ,

r̂ = r/r = 8/9i + 4/9j− 1/9k .

The d.c’s are the components of r̂, i.e., l = 8/9, m = 4/9, n = −1/9.

3.4.5 Scaling of Vector

If a = a1i + a2j + a3k , and b = b1i + b2j + b3k, and λ and µ are scalars, then

λa + µb = (λa1 + µb1)i + (λa2 + µb2)j + (λa3 + µb3)k .

Example 3.3:

If a = 2i− 7j + k , b = 3i + 2j− 5k, find

(i) 2a,

(ii) −3b,

(iii) 3a− b, and

(iv) the unit vector in the direction ofa.

Solution:

(i) 2a = 4i− 14j + 2k,

(ii) −3b = −9i− 6j + 15k,

(iii) 3a− b = 6i− 21j + 3k− (3i + 2j− 5k) = 3i− 23j + 8k,

(iv) â = a
a = 2i−7j+k√

(4+49+1)
= 1√

54
(2i− 7j + k)

Example 3.4:

Given the points A = (5,−2, 3) and B = (2, 1,−2) find: (i) The position vectors of A and B
relative to the origin
(ii) the vector

−→
AB,

(iii) the position vector of the mid-point P of AB.

Solution:

(i)
−→
OA = a = 5i− 2j + 3k,

−→
OB = b = 2i + j− 2k.

(ii)
−→
OA +

−→
AB =

−→
OB or

−→
AB =

−→
OB−−→

OA = b− a = −3i + 3j− 5k
(iii)

−→
OP =

−→
OA +

−→
AP = a + 1

2
−→
AB = 1

2 (a + b) = 7
2 i− 1

2 j + 1
2 k
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Figure 3.13: A truck on a slope

3.4.6 Physical example

Example 3.5:

A truck of mass 10000 kg stands on a slope that makes and angle of 30◦ with the horizontal.
1) Find the acceleration of the truck in terms of g.
2) An explosion exerts a force 105 N orthogonal to the surface. Find the resultant force (use
g = 10m/s2).

Solution:

1) Look at Fig. 3.13. We see that the force parallel to the plane is 1
2 mg, orthogonal 1

2

√
3mg. The

acceleration is thus 1
2 g.

2) The new force, choosing the x axis parallel to the slope, and y orthogonal (upwards), is
(105 − 1

2

√
3105)j + 5 × 104i = 13397.5j + 5 × 104i. This has size 51763.8 N, and makes an

angle of 15◦ with the slope, so 45◦ with the horizontal.

3.5 Vector products

We cannot easily generalise the product of two scalars to that of two vectors. We define new concepts of
products as what has proven to be most useful in practice There are two types of product:

a) The scalar product, that takes two vectors and produces a scalar.

b) The vector product, that takes two vectors and produces a vector.

We shall take each of these in turn.

3.6 The scalar or dot product

The scalar product, also called dot product or inner product, of a and b is written as a · b, and is defined
as

a · b = |a||b| cos θab, (3.1)

This is clearly a number (scalar) and not a vector. The angle θab is the angle between the first and second
vector, and thus

b · a = |a||b| cos θba

= ab cos(−θab)
= ab cos(θab)
= a · b .
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(One usually suppresses the subscript ab on the angle θ.) We thus see that order does not matter, or more
formally, that the dot product is commutative.

Let us look at some special cases

1. a is perpendicular to b. In that case θ = 90◦ = π/2, and the cosine is zero: a · b = 0.

2. a is parallel to a, i.e., θ = 0. a · a = a2. For that reason one sometimes writes a2 for a2. Also

a =
√

a · a .

3.
i · i = j · j = k · k = 1 ,

i · j = j · k = k · i = 0 .

This is a straighforward application of the previous two properties! A set where each vector is
orthogonal to all the others is called an orthogonal set of vectors; if the vectors also have unit length,
one speaks of an orthonormal set.

It is generally useful to list a few more properties:

1. (ma) · b = (ma)b cos θ = m(ab cos θ) = ma · b. (What is (2a) · (2b)?)

2. (a · b)c is the product of the scalar a · b with the vector c. Thus the result has the same direction as
c, with magnitude (a · b)c.

3. We can divide by a · b since it is a scalar! (Conversely, we can not divide by a vector!)

4. a · (b + c) = a · b + a · c. (Distributive law). This will not be proven here, but can easily be done
using component form.

Example 3.6:

Simplify (a + b)2

Solution:

(a + b)2 = (a + b) · (a + b)
= (a + b) · a + (a + b) · b
= a · a + b · a + a · b + b · b
= a2 + b2 + 2a · b

3.6.1 Component form of dot product

Let a = a1i + a2j + a3k, b = b1i + b2j + b3k, then

a · b = (a1i + a2j + a3k) · (b1i + b2j + b3k)
a · b = a1b1 + a2b2 + a3b3 .
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Example 3.7:

Find a unit vector which is perpendicular to (1, 2,−1) and has y-component zero.

Solution:

This vector has the form a = (ax, 0, az). Must be orthogonal to (1, 2,−1), so

(ax, 0, az) · (1, 2,−1) = 0,

which leads to
ax − az = 0, ax = az = α.

For this to be a unit vector a2 = 2α2 = 1, or α = ±1/
√

2 (we can choose either sign. Explain!).
Thus

a = (
1√
2

, 0,
1√
2
) .

3.7 Angle between two vectors

Let a and b include the angle θ. By definition a · b = |a||b| cos θ. Thus cos θ = a · b/|a||b|, or cos θ =
a/|a| · b/|b|, or cos θ = â · b̂. Thus cos θ is the dot product of the unit vectors â and b̂.
Example 3.8:

Consider the vectors u = (2,−1, 1) and v = (1, 1, 2). Find u · v and determine the angle
between u and v.

Solution:

First Calculate

u · v = u1v1 + u2v2 + u3v3 = (2)(1) + (−1)(1) + (1)(2) = 3.

Also |u| =
√

6 and |v| =
√

6, so

cos θ =
u · v
|u||v| =

3√
6
√

6
=

3
6

=
1
2

.

Hence θ = π
3 (or 60◦).

3.8 Work

In mechanics the work performed by a force is defined as the product of the magnitude of the force times
the distance moved in the direction of the force.

From Fig. 3.14 we see that, since the component of OA along the line of force is OA cos θ, where OA
is the distance d travelled, the work is W = d cos θ F = d · F, and thus work can be evaluated as an
innerproduct.
Example 3.9:

A force F = 2i + 3j − k N is applied to a particle which is moving along a wire OAB where
OA and AB are straight, and the points A and B are A = (1, 0, 0) m and B = (2, 2,−2) m. Find
the work done.

Solution:
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Figure 3.14: The work done by the force F if a mass moves from O to A equals OA · F · cos θ.

Along the line OA the work done is F · −→OA,

W1 = (2, 3,−1) · (1, 0, 0) = 2 J.

Along the line AB,
−→
AB = (1, 2,−1), and the work done is

W2 = (2, 3,−1) · (1, 2,−1) = 2 + 6 + 1 = 9 J.

The total work is thus
W = 2 + 9 = 11 J.

3.9 The vector product

We have now looked extensively at the scalar product, and now look at the vector product, that returns a
vector. Two standard notations are used

a× b, and aˆb. (3.2)

We shall use the first notation. Other terms used are “cross product” or “outer product”.
The vector product of two vectors a and b is defined as a vector, see Fig. 3.15,

• of magnitude ab| sin θ|

• of a direction orthogonal to both a and b, so that a, b and a× b form a right-handed set

The magnitude of the outer product is exactly equal to the area of the parallelogram with sides a and
b, A = ab sin θ. calculation of the outer product in component form (to be discussed below) is thus an
easy way to obtain this area.

Let n be a unit vector in the direction of a× b, then a× b = ab sin θn. From the right handed rule we
see that b× a = ab sin θ(−n) = −a× b, i.e., the vector product is not commutative. Properties of the outer
product:

1. For parallel vectors θ = 0 and so a× b = 0, in particular a× a = 0.
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Figure 3.15: The definition of the outer product.

2. For orthogonal vectord, i.e., the angle θ between a and b is π/2, any two of the vectors a, b and
a× b are orthogonal.

3. The coordinate vectors i, j, k:
i× i = j× j = k× k = 0.

i× j = k j× i = −k.
j× k = i k× j = −i.
k× i = j i× k = −j.

4. From a× b = ab sin θn we see that (na)× b = (ma)b sin θn = m(a× b).

5. a× (b + c) = a× b + a× c. Follows most easily from component form (see below).

6. Component form:
Using a = axi + ay j + azk and similar for vecb, we find

c =a× b
=(axi + ay j + azk)× (bxi + by j + bzk)

=axbxi× i + axbyi× j + axbzi× k+

aybx j× i + ayby j× j + aybz j× k+

azbxk× i + azbyk× j + azbzk× k

=i(aybz − azby) + j(azbx − axbz) + k(axby − aybx)

This last line is often summarized in the form of a determinant∣∣∣∣∣∣
i j k

ax ay az
bx by bz

∣∣∣∣∣∣ = det

 i j k
ax ay az
bx by bz

 .

Example 3.10:

Give a = (6, 1, 3) and b = (−2, 0, 4), find a× b.

Solution:

a× b = i(1 · 4− 3 · 0) + j(3 · (−2)− 6 · 4) + k(6 · 0− (−1) · (−2)) = (4,−30, 2).
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Example 3.11:

Find a× b given a = i + 2j− k, and b = 2i− j + k ,and find n̂ the unit vector perpendicular
to a and b.

a× b = det

 i 1 2
j 2 −1
k −1 1

 .

Expand by Row 1: and we get i(2− 1)− j(1 + 2) + k(−1− 4) = i− 3j− 5k.

n̂ =
a× b
|a||b| =

i− 3j− 5k√
1 + 9 + 25

=
1√
35

(i− 3j− 5k)

Other examples:

3.10 *triple products*

The inneer product a · b is a scalar, and we can’t use the result in further vector or dot products. The
outer product a× b is a vector so it may be combined with a third vector c to form either a scalar product
(a× b) · c, or a vector product: (a× b)× c.

We shall look at the scalar triple product,

(a× b) · c = (|a||b|) sin θn̂ · c.

It is clearly a scalar quantity since n̂ · c is a number. It is particularly relevant to study the geometric
interpretation, as in Fig. 3.16.

Figure 3.16: The parallelopipid related to the scalar triple product.

The quantity n · c is the height of the parallelopiped in that figure, adn we find that

|(a× b) · c| = |(|a||b| sin θ)||n̂ · c| = Area of base ×Height = V

where V is the volume of the parallelopiped. V is independent of the way it is calculated, i.e., any face
may be used as base. Hence

a · (b× c) = b · (c× a)
= c · (a× b)
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Since scalar product is commutative

(b× c) · a = (c× a) · b
= (a× b) · c.

All the six expressions are equal! The · and the × may be interchanged as long as product is defined.

3.10.1 Component Form

We know that
a× b = (a2b3 − a3b2)i + (a3b1 − a1b3)j + (a1b2 − a2b1)k,

then (a× b) · c with c = c1i + c2j + c3k,

(a× b)c = (a2b3 − a3b2)c1 + (a3b1 − a1b3)c2 + (a1b2 − a2b1)c3

This can be put in determinant form,

det

a1 b1 c1
a2 b2 c2
a3 b3 c3


Note that the order of the columns rows is the same as the order of the vectors. a, b and c in the STP.
Example 3.12:

Find (a× b) · c given a = i− 2j, b = 3j + k, c = i + j− k.

det

 1 0 1
−2 3 1
0 1 −1

 = det
(

3 1
1 −1

)
+ det

(
−2 3
0 1

)
= −4− 2 = −6

3.10.2 Some physical examples

Important physical quantities represented by a vector product are

• Angular momentum: This is defined as the product of the distance from a centre with the momen-
tum perpendicular to this distance;

L = r × p = mr × v.

• Magnetic force. The force on a charged particle (charge q) moving with velocity v in a constant
magnetic field B is perpindicular to both v and B, with size commensurate with the outer product

F = qv× B.

• Torque: The torque of a force describes the rotational effect of such a force (think about moving a
crank). Clearly only the force perpendicular to the crank makes it rotate, hence the definition

T = r × F.
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3.11 *Vector Triple Product*

(a × b) × c is perpendicular to both c and a × b, so lies in the plane of a and b. Basic result obtained
easily, is,

(a× b)× c = (a · c)b− (b · c)a.

NB. The order and the brackets must not be changed , if we do this will alter the result. If c is normal to
the plane of a and b then (a× b)× c = 0 (Why?)
Example 3.13:

Find (a× b)× c and a× (b× c) given a = i− 2j− k, b = 2i− j− k, c = i + 3j + 2k.

Solution:

(a× b)× c = (a · c)b− (b · c)a
= 5b + 3a
= 13i + j− 8k,

a× (b× c) = −(b · c)a
= −[(b · a)c− (c · a)b]
= (a · c)b− (a · b)c
= 5b− c
= 9i− 8j− 7k

3.12 *The straight line*

Straight line through A (with position vector a) and parallel to a vector b. Let P be a general point on L,
then

−→
OP =

−→
OA +

−→
AP = r = a +

−→
AP. Since

−→
AP is parallel to b , hence

−→
AP = λb (for some scalar λ), λ may

be positive or negative. Thus r = a + λb. This is the vector equation of a straight line.

3.12.1 Standard form of L

If r = xi + yj + zk, and a = a1i + a2j + a3k, b = b1i + b2j + b3k the equation

r = a + λb,

gives xi + yj + zk = (a1 + λb1)i + (a2 + λb2)j + (a3 + λb3)k. Equality of the vectors gives 3 scalar equa-
tions, x = a1 + λb1 or (x−a1)

b1
= λ, y = a2 + λb2 or (y− a2)/b2 = λ and z = a3 + λb3 or (z− a3)/b3 = λ.

Since−∞ < λ < ∞, (for different points on L), we find that these three scalar equations give the Cartesian
equations of L as

x− a1

b1
=

y− a2

b2
=

z− a3

b3
= λ

This is called the standard or canonical form.

In standard form:

(i) Equating numerators to zero determines a point on L (i.e., A).

(ii) Denominators give the direction ratios of L (i.e., the direction of the vector b)
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Example 3.14:

Find the position vector of a point on a straight line L and a vector along L whose Cartesian
equations are 3x+1

2 = y−7
3 = −2z+1

4 .
the standard form of L is

x + 1
3

2
3

=
y− 7

3
=

z− 1
2

−2

Point A:
(
− 1

3 , 7, 1
2

)
, position vector of A: − 1

3 i + 7j + 1
2 k. b = 2

3 i + 3j− 2k (parallel to L)

Example 3.15:

Example: Find the Cartesian equations of a straight line L through the point a = i− 2j + k in
the direction of the vector b = −2j + 3k.
L: r = a + λb gives xi + yj + zk = i − 2j + k + λ(0.i − 2j + 3k). This gives the following
Cartesian equations of L:

x− 1
0

=
y + 2
−2

=
z− 1

3
(= λ)
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Chapter 4

Differentiation

L&T, F.9

4.1 Assumed knowledge

4.1.1 First principles definition

If y = f (x) and x increases from x to x + δx then the change in y is give by δy = f (x + δ) − f (x), see
Fig. 4.1. The differential is defined as

dy
dx

= lim
δx→0

δy
δx

= lim
δx→0

f (x + δx)− f (x)
δx

.

4.1.2 Meaning as slope of a curve

The derivative can also be interpreted as the slope of a curve, see Fig. 4.2. If the slope at a given point has
an angle θ, we find that tan θ is dy

dx . In other words, the line y− y0 = tan θ (x− x0) is tangent to the curve
at (x0, y0).

Figure 4.1: The definition of the differential.

33
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Figure 4.2: The definition of the differential.

4.1.3 Differential of a sum

The differential of a sum is the sum of differentials,

d(u + v)
dx

=
du
dx

+
dv
dx

.

4.1.4 Differential of product

L&T, F.9.26-27

There exists a simple rule to calculate the differential of a product,

d(uv)
dx

= u
dv
dx

+ v
du
dx

.

E.g., if y = x2 sin x,
dy
dx

= x2 cos(x) + 2x sin(x) .

4.1.5 Differential of quotient

L&T, F.9.28-30

In the same way we can find a relation for the differential of a quotient,

d( u
v )

dx
=

v du
dx − u dv

dx
v2 .

E.g., if y = sin x
x ,

dy
dx

=
x cos(x)− sin(x)

x2 =
cos(x)

x
− sin(x)

x2 .
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4.1.6 Function of a function (chain rule)

L&T, F.9.33-36,7.5-18

Often we take a function of a function. In such a case, where y = f (g(x)) we put z = g(x), and find

dy
dx

=
dy
dz

dz
dx

.

This rule is sometimes expressed in words as “the derivative of the function, times the derivative of its
argument”, and you may know it as

dg( f (x))
dx

= f ′(g(x))g′(x).

Example 4.1:

Find dy
dx for y = cos(ln x).

Solution:

Put z = ln x so y = cos z,

dy
dx

=
dy
dz

,
dz
dx

= − sin z
1
x

= − sin(ln x)
x

.

Example 4.2:

Find dy
dx for y = sin3(2x− 1).

Solution:

Put z = sin(2x− 1) so y = z3,

dy
dx

=
dy
dz

dz
dx

= 3z22 cos(2x− 1) = 6 sin2(2x− 1) cos(2x− 1) .

4.1.7 some simple physical examples

Example 4.3:

Given that x(t) = 5t2 m, find the velocity v(t) and the acceleration a(t).

Solution:

Using the definitions of velocity as rate of change of position, we find that v = ẋ = dx
dt =

10t m/s, and with acceleration as rate of change of velocity, we have a = v̇ = ẍ = dv
dt =

10 m/s2.

Example 4.4:

For simple harmonic motion (SHM) x = cos(ωt). Find the velocity and acceleration.

Solution:

Use the change rule for differentiation, v = ẋ = −ω sin(ωt), a = v̇ = −ω2 cos(ωt)
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minimum

maximum

Figure 4.3: The meaning of a minimum and maximum.

4.1.8 Differential of inverse function

L&T, 9.8-13

When we wish to calculate the differential of an inverse function, i.e, a function g such that g( f (x)) = x,
we can use our knowledge of the derivative of f to find that of g.
Example 4.5:

Find the derivative of y = sin−1 x.

Solution:

We use y = sin(x) and calculate dx
dy first,

dx
dy

=
sin y
dy

= cos y.

Now cos y = ±
√

1− sin2 y, but the slope of the inverse sine is always positive. Thus

dy
dx

=
(

dx
dy

)−1
=

1√
1− x2

.

4.1.9 Maxima and minima

L&T, 9.24-31

At a maximum or minimum the slope is 0 so that dy
dx = 0. To find which case it is, we look at d2y

dx2 ,
which can easily be done from a plot of the slope.
Example 4.6:

Find all maxima and minima of y = x(3− x) and determine their character.

Solution:

We find that dy
dx = x(−1) + (3− x)1 = 3− 2x. For a maximum or minimum the slope must be

0. This happens for 3− 2x = 0, i.e., x = 3
2 . For that value of x, d2y

dx2 = −2. So the point x = 3/2,
y = 9/4 is a (and the only) maximum.

4.1.10 Higher Derivatives

L&T, F.9.21-22

Higher derivatives are obtained by differentiation 2 or more times, d2y
dx2 = d(dy/dx)

dx , d3y
dx3 = d(d2y/dx2)

dx .
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Example 4.7:

y = ln x, dy
dx = 1/x, d2y

dx2 = − 1
x2 , d3y

dx3 = 2
x3 , etc.

Example 4.8:

The equation for simple harmonic motion (SHM) is d2x
dt2 = −ω2x. Prove that x = (A cos ωt) +

B sin ωt satisfies this equation.

Solution:

We must differentiate twice, start with first derivative, dx
dt = (−ω)A sin ωt + ωB cos ωt, and

find that

d2x
/

dt2 = −ω2 A cos ω −ω2B sin ωt

= −ω2(A cos ωt + B sin ωt)
= −ω2x.

QED.

N.B.: SHM not studied here, but in next semester. The constants A, B can only be obtained with extra
input.

4.2 Other techniques

4.2.1 Implicit Differentiation

L&T, 7.26-30

The equation of a circle x2 + y2 = a2 is not in the form y = f (x), (although it can be rearranged to
y = ±

√
a2 − x2). In this case it is easier to find dy

dx directly without rearranging. Differentiate both sides of

the equation x2 + y2 = a2 with respect to x, assuming y to be a function of x. We find 2x + dy2

dx = 0. Now

use d(y2)
dx = 2y dy

dx . (Proof: Put z = y2 - need dz
dx , dz

dx = dz
dy

dy
dx = 2y dy

dx .) So 2x + 2y dy
dx = 0, or

dy
dx

= − x
y

.

N.B.: This method usually gives dy
dx in terms of both x and y.

Example 4.9:

Find dy
dx for x2 + 4x + 3xy + y3 = 6.

Solution:

Differentiating both sides with respect to x we find

2x + 4 + 3y + 3x
dy
dx

+ 3y2 dy
dx

= 0 ,

we thus conclude that
dy
dx

= − (2x + 4 + 3y)
(3x + 3y2)

.
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4.2.2 Logarithmic differentiation

L&T, 7.19-25

If a function has a large number of factors it may be easier to take the logarithm before differentiating,
using the fat that the logarithm of a product is the sum of logarithms.
Example 4.10:

Find dy
dx for y =

√
a+x

√
b−x

x−c .

Solution:

ln y = ln(
√

a + x) + ln(
√

b− x)− ln(x− c) =
1
2

ln(a + x) +
1
2

ln(b− x)− ln(x− c) .

Differentiate both sides with respect to x:

d ln y
dx

=
1
y

dy
dx

.

So
1
y

dy
dx

=
1
2

1
(a + x)

+
1
2

(−1)
(b− x)

− 1
(x− c)

.

and thus
dy
dx

=
1
2

(
1

(a + x)
− 1

(b− x)
− 2

(x− c)

) √
a + x

√
b− x

x− c
.

4.2.3 Differentiation of parametric equations

L&T, 7.31-36

Some equations can be written in parametric form, i.e., x = x(t), y = y(t) with t a parameter. We can then
find its differential in terms of the parameter. We shall study this by means of an example only.
Example 4.11:

Given circle of radius 4,
x2 + y2 = 16 (4.1)

use the parametric form to find dy
dx and d2y

dx2 at (2
√

3, 2).

Solution:

The parametric form is
x = 4 cos θ, y = 4 sin θ ,

which clearly satisfies (4.1). Now

dy
dx

=
dy
d f

d f
dx

=
dy
dθ
dx
dθ

=
4 cos θ

−4 sin θ
= − cot θ.

Note: result is in terms of θ. Then y/4 = sin θ = 1
2 , θ = π

6 (must be in first quadrant), and

cos θ =
√

3
2 therefore dy

dx = −
√

3
2
1
2

= −
√

3. Now do d2y
dx2 .
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Figure 4.4: A schematic representation of the derivative of a vector function.

Note: d2y
dx2 6=

d2y
dθ2 / d2x

dθ2

d2y
dx2 =

d
dx

dy
dx

=
d

dx
(− cot θ) =

d
dθ

(− cot θ)
dθ

dx

=
cosec2 θ

dx/dθ
= (cosec2 θ)/(−4 sin θ)

= −(1/4) cosec3 θ.

Other examples of parametric curves are

1. Ellipses x2/a2 + y2/b2 = 1: put x = a cos θ and y = b sin θ,

2. Parabola x2/a2 − y2/b2 = 1: put x = a cosh θ and y = b sinh θ.

3. Use of time t, e.g., for x = 2t + 1, y = −gt2/2 + 3t.

4.3 Vector functions

In physical (especially mechanics) problems we often have solutions in a form r = r(t), a “vector func-
tion”.
Example 4.12:

A particle moves along a circle with uniform angular frequency, r = i cos(ωt) + j sin(ωt).
Find the velocity.

Solution:

If we are perfectly naive, we write v = ṙ = −iω sin(ωt) + jω cos(ωt). This is actually correct!

The velocity is defined as the vector with as components the time-derivative of the components of the
position vector,

v = ẋi + ẏj + żk.

It is actually quite illustrative to look at a graphical representation of the procedure, see Fig. ??. We
notice there that the (vector) derivative of a vector function points is a vector that is tangent to (describes
the local direction of) the curve: not a surprise since that is what velocity is!
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Example 4.13:

When a particle moves in a circle, find two independent way to show that r · ṙ = 0.

Solution:

1) Use the uniform motion example from above, and we find r · v = −ω cos(ωt) sin(ωt) +
ω sin(ωt) cos(ωt) = 0. This is not a general answer though!
2) Write r · r = constant. (Definition of circle!) Then, by differentiating both sides of the
relation (in the “other” order), we find

0 =
dr · r

dt

=
dx2 + y2 + z2

dt

= 2x
dx
dt

+ 2y
dy
dt

+ 2z
dz
dt

= 2r · ṙ.

and we have the desired results.

Example 4.14:

Find the velocity of a particle that moves from r1 = (1, 2, 3) to r2 = (3, 6, 7) in 2 s along a
straight line with constant velocity. Also find the position 5 s after passing r1,

Solution:

Clearly r = r1 + vt if the particle is at point 1 at t = 0, We get, substituting t = 2;

(3, 6, 7) = (1, 2, 3) + v2,

from which we conclude (solving for each component separately) that v = (1, 2, 2). At time
t = 5 we have

r = (1, 2, 3) + (1, 2, 2)5 = (6, 12, 13).

4.3.1 Polar curves

Things get slightly more involved (but quite relevant!) when we look at curves in polar coordinates, i.e.,
specified by r(t) and θ(t). From r = r cos(θ)i + r sin(θ)j we find that

ṙ =(ṙ cos θ − rθ̇ sin θ)i + (ṙ sin θ + rθ̇ cos θ)j

= ṙ(cos θi + sin θj) + rθ̇(− sin θi + cos θj) = ṙr̂ + rθ̇θ̂.

The first unit vector is indeed the one parallel to r; the second one is defined from its expression. There is
some interesting mathematics going on over here,

r̂ · θ̂ = (cos θi + sin θj) · (− sin θi + cos θj) = 0!

This is often used to say that r and θ are orthogonal coordinates, at each point they are associated with
different, but always orthogonal directions!
Example 4.15:

Express the velocity of a particle moving in an elliptic (Kepler) orbit,

r =
1

1− 1
2 cos(θ)

,

in turn of θ̇. Now calculate the kinetic energy of the particle.
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Figure 4.5: The surface z = f (x, y) = sin(x) sin(y).

Solution:

Obviously r = cos θ

1− 1
2 cos(θ)

i + sin θ

1− 1
2 cos(θ)

j. Now differentiate w.r.t. t using the chain and quotient

rules:

r = θ̇

(
− sin θ(1− 1

2 cos(θ))− cos θ 1
2 sin θ

(1− 1
2 cos(θ))2

i +
cos θ(1− 1

2 cos(θ))− sin θ 1
2 sin θ

(1− 1
2 cos(θ))2

j

)

=
θ̇

(1− 1
2 cos(θ))2

(
(− sin θ)i + (cos(θ)− 1

2 )j
)

.

The kinetic energy is thus found to be

K = 1
2 mv2 = 1

2 m
(θ̇)2

(1− 1
2 cos(θ))4

(sin2 θ + cos2 θ − cos θ +
1
4
)

= 1
2 m(θ̇)2

5
4 − cos θ

(1− 1
2 cos(θ))4

.

4.4 Partial derivatives

In Figs. 4.5 and 4.6 we show an example of functions of more than one variable. Clearly it is very easy
to pick out the minima and maxima, since we can make a very visual representation of such a function
as a surface by the identification of the “height” z with the output of the function. In more than two
dimensions, i.e., when we have a function that takes three or more arguments, and returns one value, we
can’t use the visual analogy. So how do we deal with that? We need to generalise derivatives to more
than one dimension.

Let us study the situation in two dimensions, and generalise to three and more dimensions later. We
shall look at a very small part of the surface, as in Fig. 4.7. The change in the function due to taking small
steps in both variables simultaneously (the most general one possible), is

f (x + δx, y + δy)− f (x, y) = δx
f (x + δx, y)− f (x, y)

δx
+ δy

f (x + δx, y + δy)− f (x + δx, y)
δy

+ ..., (4.2)

where, just as in one dimension, the three dots denote terms of higher power in the small numbers δx and
δy. The expression is not symmetric under the interchange of x and y, and we need to take one more step.
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Figure 4.6: The surface z = f (x, y) = sin(
√

x2 + y2).

Figure 4.7: A small square δx by δy on the surface of a 2D function.

The second term can be transformed back to refer to x rather than x + δx by making an error proportional
to δx. But that corresponds to a term δxδy which is much smaller than the two terms already there if δx
and δy are small. Thus

f (x + δx, y + δy)− f (x, y) = δx
f (x + δx, y)− f (x, y)

δx
+ δy

f (x, y + δy)− f (x, y)
δy

+ ..., (4.3)

This show that a general change in the function can be expanded into a change in the individual variables,
keeping the other fixed. In the limit of δx and δy going to zero this gives rise to the partial derivatives,
denoted by a curly ∂. In mathematical notation

f (x + δx, y)− f (x, y)
δx

→ ∂ f
∂x

=
d

dx
( f (x, y))y fixed , (4.4)

f (x, y + δy)− f (x, y)
δy

→ ∂ f
∂y

=
d

dy
( f (x, y))x fixed . (4.5)

Example 4.16:

Given u(x, y) = x3 + x2y + xy + y3, find ∂u
∂x and ∂u

∂y .

Solution:

∂u
∂x

= 3x2 + 2xy + y + 0,

∂u
∂y

= 0 + x2 + x + 3y2.

where the terms are the partial derivatives of each of the four terms in the function.
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Figure 4.8: A cuboid a× b× c.

From f (x + δx, y + δy)− f (x, y) ≈ ∂ f
∂x δx + ∂ f

∂y δy we obtain that when both partial derivatives are zero
we have an extremum (minimum or maximum or ...), where the function is “flat” in first approximation.
We thus need to solve a simultaneous set of equations for such a thing to occur.
Example 4.17:

Calculate the minimum surface area for a cuboid of size a× b× c, Fig. 4.8, for fixed volume V.

Solution:

The volume V is simply abc. The surface is the area of the six rectangular sides, S = 2ab +
2ac + 2bc. The only problem is the constraint of constant volume. We can use that to eliminate
one of the three variables from the problem, we choose c: c = V/(ab). Thus

S = 2ab +
2V
b

+
2V
a

. (4.6)

Now differentiate this with respect to a and b, and find

∂S
a

= 2b− 2V
a2 ,

∂S
b

= 2a− 2V
b2 . (4.7)

These must both equal zero, and we get the equations

2b =
2V
a2 ,

2a =
2V
b2 . (4.8)

Substitute the first equation into the l.h.s. of the second equation, and find

a = −Va4, (4.9)

which can be rewritten as a(1− Va3) = 0. Clearly the solution a = 0 is nonsensical (since b
must be infinite), and we find

a = b = c = V1/3,

and the minimum surface is found for a cube.

4.4.1 Multiple partial derivatives

Multiple partial derivatives are defined straightforwardly as the partial derivative of the partial deriva-
tive,

∂2 f
∂x2 =

∂

∂x

(
∂ f
∂x

)
,

∂3 f
∂x3 =

∂

∂x

(
∂2 f
∂x2

)
.
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Slightly more complicated are the mixed ones,

∂2 f
∂x∂y

=
∂

∂x

(
∂ f
∂y

)
,

∂2 f
∂y∂x

=
∂

∂y

(
∂ f
∂x

)
.

Even though this looks complicated, it can be shown that the order of differentiation actually doesn’t
matter!
Example 4.18:

Find all first and second derivatives of f (x, y) = x sin y + cos(x− y).

Solution:

∂ f
∂x

= sin y− sin(x− y),

∂ f
∂y

= x cos y + sin(x− y),

∂2 f
∂x2 = 0− cos(x− y),

∂2 f
∂y2 = −x sin y− cos(x− y),

∂2 f
∂y∂x

= cos y + cos(x− y),

∂2 f
∂x∂y

= cos y + cos(x− y),

where the last two terms have been calculated in the order indicated in the denominator, and
we see the equality alluded to above.

4.5 Differentiation and curve sketching

Let me start this section by an example. A group of people is sitting around a circular table of radius a.
A single light bulb is suspended above the table. What is the optimal height for the bulb, so that people
have most light on their plates?

The amount of light on each plate is related to the area of the plate perpendicular to the light rays, but
the intensity of light falls like 1/r2. Let A be the area of the plate, φ the angle the light rays make with
the plate and table, and P the power emitted by the bulb, and r the distance from bulb to the centre of the
plate. Then

L =
PA sin φ

4πr2 .

This is not yet in a suitable form, but we can express φ and r in terms of x, the height above the table,

sin φ = x/r, r =
√

x2 + a2.

This gives the dependence of L on x as
PA
4π

x
(x2 + a2)3/2 .
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Figure 4.9: The function L(x), see text.

So how do we now choose x. The first thing is to sketch L(x). Let us use P = 100 W, A = 10−2 m2, and
a = 1m. The first thing to do is to draw a curve (using whatever tool you prefer), see Fig. 4.9.

We see that there is a maximum, which we can find by differentiation,

dL
dx

=
PA
4π

[
−3
2

x · 2x
(x2 + a2)5/2 +

1
(x2 + a2)3/2

]
=

PA
4π

1
2
(x2 + a2)5/2

[
x2 + a2 − 3x2

]
This is zero when x = ± 1

2

√
2a, and thus x = 0.707 m. Since f ′(x) > 0 below this point and positive

above, this is a maximum.

4.5.1 Global vs. local maximum

The greatest value over a given interval is called a global maximum, the smallest one a global minimum.
A local maximum means that all points near the current one are smaller; a local minimum means that all
points are larger.

A local minimum or maximum is usually determined by a zero derivative (unless the function isn’t
differentiable); a local minimum or maximum can be a global one, but doesn’t have to be.
Example 4.19:

Find the global minimum and maximum of f (x) = x3 − 4x over 2 ≤ x ≤ 3.

Solution:

First look a stationary points, f ′(x) = 0 leads to 3x2 − 4 = 0 or x = ±2/
√

3 ≈ ±1.155. These
points lie within the interval! Now make a table

x f (x)
−2 0
−2/

√
3 3.079

0 0
2/
√

3 −3.079
3 15

Thus the global minimum is −3.079 (x = 2/
√

3) and the maximum 15 (x = 3), as we can also
see from a sketch, see Fig. 4.10.

4.5.2 Curve sketching

With all the information we have about functions and derivatives, we can build up a much better picture
of graphs and curves; we can give a few rules that will help us to do much better!
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Figure 4.10: The function used in the calculation of the global extrema.

1. Look for symmetries: is the function even or odd?

2. Look for forbidden regions: if y = (x2 − 1)1/2, x2 ≥ 1.

3. Look for the intercept with the axes: x = 0 is easy and y = 0 is usually (much) harder.

4. Look for isolated points where f is not defined (asymptotes).

5. Study the behaviour for large |x|

6. Study the behaviour for small |x|

7. Look at the derivatives (local minima and maxima, strategic points)

8. Use information on the concavity (second derivative).

Example 4.20:

Sketch the curve y = (x− 1)2(x− 2).

Solution:

This curve is not symmetric, and is defined for all x; no forbidden regions.

Intercept with x axis: x = 1 and x = 2. With y axis: y = −2.

For large x the function grows as x3.

Derivative (x− 1)(3x− 5) is zero for x = 1 ( f (x) = 0) and x = 5/3 ( f (x) = −4/27).

Concavity: f ′′ = 6x− 8: negative at x = 1 (minimum), positive at 5/3 (maximum).

x f (x) f ′(x) remarks
-2 -36 33
-1 -12 16
0 -2 5
1 0 0 zero and local maximum
5/3 -4/27 0 local minimum
2 0 1 intersects x axis
3 4 8

The result is shown if Fig. 4.11.
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Figure 4.11: The function (x− 1)2(x− 2).
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Figure 4.12: The function x/(1 + x2).

Example 4.21:

Sketch the curve y = x/(1 + x2).

Solution:

This curve is antisymmetric (if x → −x, y → −y), and is defined for all x; no forbidden
regions.

Intercept with x axis at x = 0 only; also intercept with y axis.

For large x y = (x/x2)
1+1/x2 ≈ 1/x− 1/x3.

For small x (using geometric series) y = x− x3 + . . ..

Derivative (using quotient rule)

dy
dx

=
(1 + x2)− x2x

(1 + x2)2 =
1− x2

(1 + x2)2 .

This is zero for x = ±1. From the second derivative
2 x (−3+x2)

(1+x2)3 we find that x = 1 is a

maximum, x = −1 a minimum. Together with y(x = 2) = 2/5, y(x = 3) = 3/10, we can now
sketch the curve, see Fig. 4.12.

Example 4.22:

Sketch the curve y = 1+ex

1−ex .

Solution:



48 CHAPTER 4. DIFFERENTIATION

-4 -2 0 2 4
x

-10

-5

0

5

10

f(
x)

(1+e
x
)/(1-e

x
)

-(1+e
x
)/x

±1

Figure 4.13: The function 1+ex

1−ex .

If we take x → −x, then

y =
1 + e−x

1− e−x =
e−x

e−x
ex + 1
ex − 1

= −y.

The function is undefined when ex = 1, i.e., x = 0.
The function is zero when 1 + ex = 0 (i.e., never)!
For small x ex = 1 + x, so y = −1/x− 1 + . . ..
For large positive x we can ignore the ones, and y → −1; for large negative x ex is negligible,
and y → 1.
Derivative (using quotient rule)

dy
dx

=
−ex(1 + ex)− ex(1− ex)

(1− ex)2 =
−2ex

(1− ex)2

from which we conclude that it is negative everywhere, no zeroes.
We can now sketch the curve, see Fig. 4.13.

4.6 *Application of differentiation: Calculation of small errors*

We know that if y = f (x) then
dy
dx

= lim
δx→0

f (x + δx)− f (x)
δx

.

Provided that δx is small enough (but not infinitesimally small) dy
dx ≈

δy
δx , so

δy ≈ dy
dx

δx .

Example 4.23:

We can measure the volume of a sphere by measuring its radius r and then use the formula,
V = (4/3)πr3. Suppose we measure r = 6.3± 0.02 m. Find the approximate error in V.

Solution:

If r = 6.3 m then V = 4
3 π6.303 = 1047.4 m3. The small error δr = 0.02 m will cause an error in

V given by δV ≈ dV
dr δr = 4πr2δr = 4π 6.302 0.02 = 10.0 m3. Hence

V = 1047.4± 10.0 m3.
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Example 4.24:

We measure the height h of a tower at a distance d, by measuring d and the angle α with the
horizontal. We then use the formula tan α = (h/d).

Solution:

Find error in h due to an error δα in α assuming d to be known exactly. We solve for h, h =
d tan α, dh/dα = d sec2 α. Therefore

δh ≈ dh
dα

δα = d sec2 αδα .

Example 4.25:

Given the relation between current, voltage and resistance, I = V/R, with V = 250 V, R =
50 Ω, find the change in the current I 1) if V increases by 1 V, and 2) if R increases by 1 Ω.

Solution:

We use the rule for small changes for partial derivatives,

δI ≈ ∂I
∂V

δV +
∂I
∂R

δR .

We find

∂I
∂V

=
1
R

,

∂I
∂R

=
−V
R2 .

Using the numerical values, we find

δI =
1
50
× 1− 250

502 × 1 =
1

50
− 1

10
= − 2

25
= −0.08 A
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Chapter 5

Integration

This chapter should contain partially things you know -essentially the basis of integration- and quite a
few new things that build on that, extending your knowledge of integrals and integration.

5.1 Basic integration

There are two ways of thinking about integration, and they both have their uses. The one we shall con-
centrate on here, is integration as the inverse of differentiation, also call indefinite integration,
• Indefinite integral ∫

f (x) dx = F(x),
d

dx
F(x) = f (x)

where F is the inverse derivative (also called “primitive”) of f .
Example 5.1:

Integrate 4x3.

Solution:

4x3 =
d(x4)

dx
, so

∫
4x3dx = x4 + c

This type of integration is called an indefinite integral. We always get a constant of integration (in this
case “c”) for an indefinite integral.
Note: The result of

∫
f (x)dx is another function of x.

• Definite integral
A definite integral is related to the area under a curve (see Fig. ??)

intb
a f (x) dx .

Plot the curve y = f (x), as in Fig. 5.1. The shaded area under curve between x = a and b equal a
number A. We can calculate this as

A =
∫ b

a
xdx,

(This is called a definite integral.) This is defined as the sum from x = a to x = b of the area of all the
small strips under the curve, in the limit that they become vanishingly thin.

The two definitions are related by the
• Fundamental theorem of calculus∫ b

a
f (x) dx = [F(x)]ba = F(b)− F(a)

51
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Figure 5.1: The area under a curve.

Example 5.2:

Find area under curve y = 2e3x between x = −1 and x = 1.

Solution:

The area is given by the integral

A =
∫ 1

−1
2e3x dx

= 2
∫ 1

−1
e3xdx

= 2
(

e3x/3
)1

−1

= 2(e3/3− e−3/3)
≈ 13.3572 .

Note: There is no constant of integration in a definite integral.
Note: The result is a number not a function.

Final Remark: Some integrals can never be done in terms of known functions.
Example 5.3:∫

ex2
dx,

∫ 2
1 1/(x + cos x)dx. For these a numerical method will give results for a definite

integral, e.g., a computer version of summing the area of the strips under a curve.

5.1.1 standard integrals

We can use the “inverse derivative” to look up standard derivatives from right to left, to get a table of
integrals. Many of the integrals in the formula book were obtained this way, Some examples:

d sin x
dx

= cos x  
∫

cos x dx = sin x + c
d ln x

dx
=

1
x

 
∫ 1

x
dx = ln x + c

d(eax)
dx

= aeax  
∫

eax dx =
1
a

eax + c

d(sin−1x)
dx

=
1√

1− x2
 

∫ dx√
1− x2

= sin−1x + c

Let us look at an interesting physics example of integration.
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Figure 5.2: A piston in a cylinder

Example 5.4:

A piston is moved in a cylinder containing an ideal gas (see Fig. 5.2). Calculate the work done
as the enclosed volume changes.

Solution:

The work done is force times distance. The maginitude of the force is pressure times ares,
F = P× A. If we move the piston by a distance δx, the work done is thus PAδx = PδV. Thus

W =
∫ V1

V0

P(V) dV .

For an ideal gas P(v) = A/V, and we find that

W =
∫ V1

V0

A
V

dV = A [ln(V)]V1
V0

= A(ln V1 − ln V0) = A ln(V1/V0) .

Note that the argument of the logarithm is dimensionless. This is true of any mathematical
functions we write.

5.2 Rules for integration

5.2.1 Sum rule ∫
[g(x) + f (x)] dx =

∫
g(x) dx +

∫
f (x) dx

Example 5.5:

Find
∫ π

0
(sin x + cos x)dx.

Solution:

∫ π

0
(sin x + cos x)dx =

∫ π

0
sin x dx +

∫ π

0
cos x dx = [− cos(x) + sin(x)]π0 = −(−1)− (−1) = 2

5.2.2 Constant multiple ∫
k f (x) dx = k

∫
f (x) dx .
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Example 5.6:

Find
∫ √

x(x3 − 3) dx.

Solution:

Expand the integrand;∫ √
x(x3 − 3) dx =

∫
(x7/2 − 3x1/2) dx =

∫
x7/2 dx− 3

∫
x1/2 dx =

2
9

x9/2 − 3
2
3

x3/2 + c =
2
9

x9/2 − 2x3/2 + c.

5.3 Properties of definite integrals

For definite integrals we can, using the fundamental theorem of calculus, determine quite a few proper-
ties.

1.
∫ a

a
f (x) dx = 0.

2.
∫ a

b
f (x) dx = −

∫ b

a
f (x) dx. The definite integral is not just an area!

3.
∫ b

a
f (x) dx =

∫ c

a
f (x) dx +

∫ b

c
f (x) dx. The value of c is arbitrary, it doesn’t have to be between a

and b!

4.
∫ b

a
f (x)dx ≥ 0 if f (x) ≥ 0.

5. If m ≤ f (x) ≤ M and b ≥ a, then m(b− a) ≤
∫ b

a
f (x)dx ≤ M(b− a).

5.4 Improper integrals

We often integrate over an infinite range. Such integrals are called improper. They are defined a s limits,

∫ ∞

−∞
f (x) dx = lim

a→−∞

∫ b

a
f (x) dx .

Example 5.7:

Evaluate
∫ 0

−∞
ex dx.

Solution:

Apply the definition

∫ 0

−∞
ex dx = lim

a→−∞

∫ 0

a
ex dx = lim

a→−∞
(1− ea) = 1 .

A inite integral is called convergent, if tyhe limit does not exist the integral is called divergent.
Let us look at a physics example
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Example 5.8:

Determine the escape velocity from earth.

Solution:

We need belance of energies. The initial kinetic energy must equal the work done against
gravity to get the object )of mass m to escape from the gravity field of the earth (mass M,
radius R)

1
2 mv2 =

∫ ∞

R

GmM
r2 dr

Evaluate the integral as above,∫ ∞

R

GmM
r2 dr = gmM lim

a→∞

∫ a

R

1
r2 dr

= gmM lim
a→∞

(
−1

a
+

1
R

)
=

gmM
R

5.4.1 Divergent integrands

Integrals that require special attentions is those where the integrand diverges. We need to take a start-
point just above and below the singularity, and take a limit. A simple and obvious example is∫ 1

0

1
x

dx = lim
ε↓0

∫ 1

ε

1
x

dx = lim
ε↓0

[ln(x)]1ε = lim
ε↓0

(− ln ε) = ∞.

Be extrememly careful when the singularity occurs in the middle of the integration interval.
Example 5.9:

Calculate
∫ 1

−1

1
x2 dx

Solution:

Split the interal into two parts,

lim
ε↓0

∫ −ε

−1

1
x2 dx + lim

δ↓0

∫ 1

δ

1
x2 dx

2 + lim
ε↓0

1
ε

+ lim
ε↓0

1
δ

= ∞.

The naive answer is 2! So we note that we have to be extremely careful

5.5 Strategy

Since there is no guaranteed method of doing integrals we proceed as follows

1. Draw up a list of as many as possible “standard integrals” that can be done. (This has already been
done for you and is given in the formula book.)

2. When given a new integral you must try to rearrange into one of the standard types. This may
involve some or all of the following

(a) directly rearrangement (rather trivial);
(b) substitution;
(c) integration by parts;
(d) special methods for particular types.
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5.6 Integration by Parts

L&T, 19.2

This is the integral equivalent to the differential of a product. Start with

d(uv)
dx

= u
dv
dx

+ v
du
dx

.

Integrate both sides with respect to x,

uv =
∫

u
dv
dx

dx +
∫

v
du
dx

dx .

Now use (dv/dx)dx = dv and (du/dx)dx = du. Rearrange the terms, and find

uv =
∫

udv +
∫

vdu.

This last equation is mainly used in the form

∫
u dv = uv−

∫
v du.

Example 5.10:

Evaluate I =
∫

xex dx.

Solution:

Put u = x and ex dx = dv. u part: u = x, therefore du/dx = 1 and du = dx. v part: exdx = dv
therefore dv/dx = ex and v =

∫
ex du = ex (constant of integration not needed here). Thus

I = uv−
∫

v du = xex −
∫

ex dx = xex − (ex + c) .

Note that the x part of the original integrand (i.e., u) was differentiated, but the ex part (i.e., dv/dx)
was integrated. We obtained a new integral which was easier than the old one because (du/dx) was
simpler than u but

∫
v dx was no harder than v. It is a requirement that the resulting integral is no more

complicated than the original!
Example 5.11:

Evaluate I =
∫

x2 sin xdx.

Solution:

Put u = x2, dv = sin x dx. du/dx = 2x, therefore du = (2xdx). dv/dx = sin x, therefore
v =

∫
sin x dx = − cos x. We thus obtain

I = uv−
∫

v du

= x2(− cos x)−
∫

(− cos x)2x dx

= −x2 cos x + 2
∫

x cos x dx .
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Now repeat this procedure: Put u = x, cos x dx = dv. We find du/dx = 1, and therefore
du = dx. Finally dv/dx = cos x and thus v = sin x.

I = −x2 cos x + 2
[

x sin x−
∫

sin x dx
]

= −x2 cos x + 2x sin x− 2(− cos x) + k.

(We have put the constant of integration in at the end.)

Example 5.12:

Evaluate I =
∫

ln x dx.

Solution:

Even though this does not look like integration by parts, we can use a trick! Use the fact that
the derivative of the logarithm is much more manageable than the logarithm itself, and use a
function v with derivative 1. Thus u = ln x, dv = 1 dx, du

dx = 1
x , dv

dx = 1, du = (1/x)dx, v = x.

I = uv−
∫

v du

= x ln x−
∫

x 1/x dx

= x ln x−
∫

1 dx

= x ln x− x + k .

Example 5.13:

Find I =
∫ π/2

0
ex cos x dx.

Solution:

Here we can integrate or differentiate ex, and differentiate or integrate cos x, since the integrals
and derivatives of both functions are as simple as the original function. We choose u = ex,
therefore du/dx = cos x and v = sin x.

I = (uv)π/2
0 −

∫ π/2

0
vdu

= (ex sin x)π/2
0 −

∫ π/2

0
sin x ex dx

= eπ/2 −
∫ π/2

0
sin xex dx.

Now integrate by parts again.

Note: Initially we differentiated u = ex, taking cos x as a derivative. We must use the same
procedure again, and not switch u and v. I.e., we must put u = ex and dv = sin xdx. Therefore
u = ex, du/dx = ex, and thus du = exdx, dv = sin xdx. It follows that dv/dx = sin x, and so
v = − cos x.

I = eπ/2 − (−ex cos x)π/2
0 +

∫ π/2

0
− cos xex dx

= eπ/2 − [0− (−1)]−
∫ π/2

0
ex cos x dx

= eπ/2 − 1− I .
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Bring I to the left-hand side,
2I = eπ/2 − 1.

and thus, finally,

I =
1
2

(
eπ/2 − 1

)
.

5.7 Integration by substitution

L&T, 19.3

This is the integral equivalent of the chain rule. If z = f (x) and x = g(t) then the chain rule says,
dz
dt = dz

dx
dx
dt . We can rearrange this “by multiplying by” dt to get,

dz =
dz
dx

dx

. (This can be proven from the rule for finite steps,

δz
δt

δt =
δz
δx

δx,

which can be rearranged as

δz =
δz
δx

δx.

In the limit that δx goes to zero, as it must in the integral, we find the required result). This is the basic
formula we need to convert an integral with respect to a new variable z. It is true as a substitution rule
inside the integral, not as a general equality.

5.7.1 Type 1

Replace some function of x by z.
Example 5.14:

Evaluate I =
∫ 2

0
x sin(x2) dx.

Solution:

Substitute z = x2 (try this), then dz = (dz/dx)dx = 2xdx. We can only use this substitution
if we can identify 2x dx as part of I. To that end write I = (1/2)

∫ 2
0 sin x2 2x dx. We can now

substitute for x2 = z and for 2xdx = dz, and thus I = 1
2

∫
sin z dz, where the limits still need to

be filled in. Since I is now an integral w.r.t. z, the limits must be starting and finishing values
of z. At the start, where x = 0, z = x2 = 0. At the finish x = 2, z = 4, so

I =
1
2

∫ 4

0
sin z dz

=
1
2
[− cos z]40

=
1
2
(− cos 4 + 1)

≈ 0.8268 .

Note: The integrand, (i.e., the object being integrated) changes from x sin(x2) to (1/2) sin z.
Part of this change is due to the change from dx to dz.
Note: The integration limits change (for definite integrals only).
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Example 5.15:

Calculate the indefinite integral I =
∫ dx

a2 + x2 .

Solution:

Use substitution, and take z = (x/a), dz = (1/a)dx, x = az.

I =
∫ dx

a2 + x2 a
1
a

dx

=
∫ dx

a2 + a2z2 adz

=
∫ a

a2(1 + z2)
dz

=
1
a

∫ dz
(1 + z2)

=
1
a

tan−1z + c.

Finally we must substitute back using z = x/a,

I =
1
a

tan−1
( x

a

)
+ c.

Several standard integrals can be generalised using this substitution (left as exercise).
Example 5.16:

Evaluate I =
∫ 1√

a2 − x2
dx .

Solution:

Using the substitution x = az we find

I =
∫ dz√

1− z2
= sin−1 z + c = sin−1(x/a + c)

Thus ∫ 1√
a2 − x2

dx = sin−1(x/a + c) .

5.7.2 Type 2

Replace x by a function of z. Sometimes, instead of putting

z = f (x) , (5.1)

e.g., z = x2, we replace x directly by putting

x = g(z) . (5.2)

This is really same as using (5.1) since we can rearrange this equation, (i.e., solve for x) to get (5.2). How-
ever, we can work directly from (5.2) by calculating dx/dz. We then use the formula

dx =
dx
dz

dz .

(Remember that we also must change limits on a definite integral!)
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Example 5.17:

Evaluate I =
∫ 4

0

1
1 +

√
x

dx.

Solution:

Put x = z2, dx/dz = 2z, dx = 2zdz. The limits change, x = 0 ⇒ z = 0, x = 4 ⇒ z = 2. We
obtain

I =
∫ 2

0

1

1 +
√

z2
2zdz =

∫ 2

0

2z
(1 + z)

dz

=
∫ 2

0

2(z + 1)− 2
(z + 1)

dz =
∫ 2

0

(
2− 2

(z + 1)

)
dz

= [2z− 2 ln(z + 1)]20 = (4− 2 ln 3)− 0 = 4− 2 ln 3 = 1.8028

5.8 Integrals of the inverse of a linear function

The integral I =
∫

(1)/(ax + b) dx, can be done by substitution, z = ax + b, dx = dz/a, I = 1
a
∫ 1

z dz =
1
a (ln z + C). Thus

I =
∫

(1)/(ax + b) dx =
1
a

(ln(ax + b) + C

5.9 Integrals of a linear function divided by a quadratic

L&T, 15.31-43

We now study the integral I =
∫

(px + q)/(x2 + ax + b) dx, i.e., linear over quadratic, where the quadratic
does not factorize.

Step 1 Calculate the differential of the denominator,

d
dx

(x2 + ax + b) = 2x + a.

Use this to rearrange the numerator into form

p
2
(2x + a) + (q− pa/2),

i.e., as a constant times the derivative of the denominator plus another constant. We can now split
the integral,

I =
p
2

∫ 2x + a
x2 + ax + b

dx + (q− pa/2)
∫ dx

x2 + ax + b
.

The first integral on the r.h.s. can be done using the substitution z = x2 + ax + b,∫ 2x + a
x2 + ax + b

dx =
∫ 1

z
dz = ln z = ln(x2 + ax + b) .
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Step 2 The second integral is more complicated, and we deal with

J =
∫ dx

x2 + ax + b

separately. The technique used is based on completing the square, x2 + ax + b = (x + c)2 ± d2,
which after the substitution z = x + c leads to a standard integral

∫ dz
z2 ± d2 .

Depending on the sign we get either an inverse tangent or a ratio of logarithms,

∫ 1
z2 + d2 dz =

1
d

tan−1(z/d) + c ,∫ 1
z2 − d2 dz =

1
2d

∫ ( 1
z− d

− 1
z + d

)
dz =

1
2d

ln
(

z− d
z + d

)
+ c .

Example 5.18:

Evaluate I =
∫ 4x− 1

x2 + 2x + 3
dx.

Solution:

Step 1 Differentiating the denominator gives 2x + 2. Take apart into tow pieces, by rearranging
numerator as 4x− 1 = 2(2x + 2)− 5.

I =
∫ 2x + 2

x2 + 2x + 3
dx− 5

∫ dx
x2 + 2x + 3

= ln(x2 + 2x + 3)− 5
∫ dx

x2 + 2x− 3

Now complete the square for the denominator, and find that

x2 + 2x + 3 = (x + 1)2 + 2 = (x + 1)2 +
√

2
2

J =
∫ dx

x2 + 2x + 3
=
∫ dx

(x + 1)2 +
√

2
2 .

Substitute z = x + 1, dz = (dz/dx)dx = dx,

J =
∫ dz

z2 +
√

2
2

= (1/
√

2) tan−1(z/
√

2) + c .

Thus we find

I = 2 ln(x2 + 2x + 3)− (5/
√

2) tan−1((x + 1)/
√

2) + c .
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5.9.1 Completing the Square

L&T, 1.3.3.5

Completing the square is a simple idea that is surprisingly useful. First a definition:

A polynomial is a sum of powers of a variable x (say). The degree of this polynomial is its
highest power.

Let us look at a few examples:

polynomial degree
(a) x + 1 1 Also called linear, since if we plot
(b) 4x 1 the functions y = x + 1, y = 4x, etc.
(c) ax + b 1 we get a straight line
(d) x2 + 2x + 1 2
(e) −7x2 − 3 2 (also known as quadratic)
(f) ax2 + bx + c 2
(g) x3/9− πx 3 cubic
(h) 12x6 + 0.001 6

A polynomial of infinite degree is usually called an infinite power series.
Any polynomial of degree 2, i.e., a quadratic, can always be rearranged to have the form a(x + b)2 + c,

as the square of a linear term plus a constant. Bringing a quadratic polynomial to this form is called
completing the square.

5.9.2 Method

“Completing the square” is bringing a quadratic to the form a(x + b)2 + c.

In general, if two polynomials are equal, it means that the coefficient of each power of the variable are
equal, since each power varies at a different rate with the variable. So in order to complete the square, we
must equate coefficients of powers of x on both sides. We shall do this by example.

1. Complete the square in x2 + x + 1:
Put

x2 + x + 1 = a(x + b)2 + c
= ax2 + 2abx + c + ab2.

Now equate coefficients of x2 on both sides. We find 1 = a, or a = 1. Then compare the coefficients
of x. We conclude 1 = 2ab. Using a = 1 we find b = 1/2. Now equate the constant term, 1 =
ab2 + c = 1

4 + c. We conclude that c = 3/4.
Collecting all the results we find

x2 + x + 1 =
(

x +
1
2

)2
+

3
4

.
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2. Complete the square in 2x2 − x.
Solve 2x2 − x = a(x + b)2 + c. We compare coefficients of

x2: 2 = a,
x: −1 = 2ab, therefore b = −1/4,
const: 0 = ab2 + c, therefore c = −1/8.

Thus

2x2 − x = 2
(

x− 1
4

)2
− 1

8
.

It is often useful to write the constant as

c =

{
d2 (if c is positive)
−d2 (if c is negative)

5.10 Integration of rational Functions

5.10.1 Partial fractions

L&T, 2.12.2.1

Before dealing with partial fractions, we need to define a rational function.

A rational function is one with the form f (x) = P(x)/Q(x) (Q(x) 6= 0), where P(x) and
Q(x) are polynomials.

Partial fractions is a method of simplifying a rational function. For the present we shall only consider
rational functions where the degree of the numerator is less than that of the denominator (not equal). If
this is not true then we can convert it into this form–see later (integration section). First factorise the
denominator Q(x) into a mixture of linear and quadratic factors. This can always be done without using
complex numbers (use linear factors only if possible). E.g.,

x3 − 2x2 + x− 12 = (x− 3)(x2 + x + 4).

We can now simplify the rational function using partial fractions. We do this by means of examples as
part of the revision.
Example 5.19:

Simplify 3x−1
2x2−x−1 using partial fractions.

Solution:

3x− 1
2x2 − x− 1

=
3x− 1

(x− 1)(2x + 1)
.

We have factorised the denominator). Now put

3x− 1
(x− 1)(2x + 1)

=
A

x− 1
+

B
2x + 1

(A, B constants). Multiply both sides by (x− 1)(2x + 2), the denominator of the left-hand side.
We find

3x− 1 = A(2x + 1) + B(x− 1). (5.3)
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Now compare coefficients on both sides. First x: 3 = 2A + B, and for the constant term we
find −1 = A− B. We solve these simultaneous linear equations, and find A = 2

3 , B = 5
3 . So

3x− 1
(x− 1)(2x + 1)

=
2

3(x− 1)
+

5
3(2x + 1)

.

Alternatively we can find A and B by choosing values for x. If we choose x = 1 then (5.3)
becomes 2 = 3A + 0B, and therefore A = (2/3). If we choose x = −(1/2) then it becomes
−(5/2) = 0A− (3/2)B, and therefore B = 5/3, in agreement with our previous results.

Example 5.20:

Simplify x+1
x(x2−4) using partial fractions.

Solution:

x + 1
x(x2 − 4)

=
x + 1

x(x− 2)(x + 2)
=

A
x

+
B

x− 2
+

C
x + 2

,

(left as an exercise, A = −1/4, B = 3/8, C = −1/8).

Example 5.21:

Simplify x2

(x−1)(x−2)3 using partial fractions.

Solution:

x2

(x− 1)(x− 2)3 =
A

(x− 1)
+

B
(x− 2)

+
C

(x− 2)2 +
D

(x− 2)3 ,

where we have one term for each power of the factor up to the maximum. Multiply by (x −
1)(x− 2)3 and equate coefficients.

x2 = A(x− 2)3 + B(x− 1)(x− 2)2 + C(x− 1)(x− 2) + D(x− 1).

Substitute x = 2: 4 = 0 + 0 + 0 + D so D = 4. x = 1: 1 = −A + 0 + 0 + 0 so A = −1.
Equate the coefficients of x3: 0 = A + B + 0 + 0, so B = 1, and the coefficients of constant
term: 0 = −8A− 4B + 2C− D, and thus C = 0.

x2

(x− 1)(x− 2)3 = − 1
(x− 1)

+
1

(x− 2)
− 1

(x− 2)3 .

Example 5.22:

Simplify x+5
x3−1 using partial fractions.

Solution:

First factorise Q(x), x3 − 1 = (x − 1)(x2 + x + 1). We cannot factorise x2 + x + 1 into their
factors with real coefficients. Write

x + 5
x3 − 1

=
A

x− 1
+

B + Cx
x2 + x + 1

.

Multiply with x3 − 1,
x + 5 = A(x2 + x + 1) + B + Cx(x− 1),
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substitute x = 1: 3A = 6, or A = 2. Equate coefficients of x2: A + C = 0, C = −2. Equate
coefficients of the constant part: A− B = 5, B = −3.

x + 5
x3 − 1

=
2

x− 1
− 3 + 2x

x2 + x + 1
.

A rational function is a function of the form f (x) = P(x)/Q(x) where P and Q are both
polynomials.

Integration of such functions are dealt with according to the following procedure:

Step 1 If the degree of P is equal or greater that of Q then rearrange the numerator to get

P(x) = L(x)Q(x) + M(x) (5.4)

where L and M are polynomials and M has lower degree than Q,

Example 5.23:

Bring f (x) =
2x3 + x2 + x + 1

x3 − x2 + 2
to the form (5.4).

Solution:

Put 2x3 + x2 + x + 1 = 2(x3 − x2 + 2) + 3x2 + x − 3 This corresponds to L = 2 and
M = 3x2 + x + 3. Thus f (x) = LQ+M

Q = L + M
Q . We can clearly integrate L directly

(why?).

Step 2 We now have to integrate the new rational function M
Q where M has lower degree than Q. This is

dealt with by

1. factorising Q in linear and/or quadratic factors.
2. using the technique of partial fractions.

We now obtain integrals with one or more of the following types

(a)
∫ 1

x+a dx: integrates to ln(x + a).

(b)
∫ 1

(x+a)2 dx: integrates to − 1
x+a

(c)
∫ px+q

x2+ax+b dx: integrates see above (Sec. 5.9)

Example 5.24:

Integrate
∫

(3x2 + x + 3)/(x3 − x2 + 2) dx.

Solution:

This integrand can be rewritten as

3x2 + x + 3
x3 − x2 + 2

=
3x2 + x + 3

(x + 1)(x2 − 2x + 2)
=

A
x + 1

+
Bx + C

x2 − 2x + 2
.

To find A, B, C, we need to solve

3x2 + x− 3 = A(x2 − 2x + 2) + (Bx + C)(x + 1) .

We can get one of the values for almost free, using x = −1: 5A = −1, or A = −1/5. We solve
for the rest by equating the coefficients of identical powers of x,
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x2: 3 = A + B, therefore B = 16/5,

constant: −3 = 2A + C, so that C = −13/5.

We have reexpressed the integral as

∫ 3x2 + x + 3
x3 − x2 + 2

dx = −1
5

∫ 1
x + 1

dx +
1
5

∫ 16x− 13
x2 − 2x + 2

dx.

The first term (1/(x + 1)) is easy to integrate and gives ln(x + 1). Let us therefore concentrate
on the second term∫ 16x− 13

x2 − 2x + 2
dx =

∫ 8(2x− 2) + 5
x2 − 2x + 2

dx

= 8
∫ (x2 − 2x + 2)′

x2 − 2x + 2
dx +

∫ 5
x2 − 2x + 2

dx

= 8 ln(x2 − 2x + 2) +
∫ 5

x2 − 2x + 2
dx.

Here we have used the fact that the differential of the denominator is 2x − 2. The remaining
integral is treated by completing the square,

x2 − 2x + 2 = (x− 1)2 + 1,

which allows us to write ∫ 5
x2 − 2x + 2

dx = 5 tan−1(x− 1)

Using the two previous examples we conclude that

∫ 2x3 + x2 + x + 1
(x3 − x2 + 2)

dx = 2x− 1
5

ln(x + 1) +
8
5

ln(x2 − 2x + 2)− 3
5

tan−1(x− 1) .

5.11 Integrals with square roots in denominator

L&T, 16. (some overlap).

We shall consider only one type ∫ 1√
a + bx− x2

dx .

The coefficient of x2 must be negative, if it is positive we need a different approach which involves hy-
perbolic functions (not discussed here). The method is as follows

1. Complete the square, a + bx− x2 = d2 − (x + c)2, with c = −b/2 and d2 = a + b2/4.

2. Substitute z = x− c, which gives us the derivative of the arcsin.

Example 5.25:

Calculate I =
∫ dx√

3 + 4x− x2
.

Solution:
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Complete the square: 3 + 4x − x2 = d2 − (x + c)2. Equate the coefficients of each power. x2:
−1 = −1, contains no unknowns. x: 4 = −2c (therefore c = −2). The constant term gives
3 = d2 − c2 = d2 − 4, and thus d2 = 7, d =

√
7, and

I =
∫ dx√

7− (x− 2)2
.

We substitute z = x− 2, dz = dz/dx dx = dx, which leads to

I =
∫ dz√√

7
2 − z2

= sin−1 z√
7

+ k = sin−1
(

x− 2√
7

)
+ k.

(The integral is a standard integral and can be found in the tables, but is easily checked by
using the chain rule and

d
dy

sin−1 y =
1√

1− y2
.

)



68 CHAPTER 5. INTEGRATION



Chapter 6

Applications of Integration

6.1 Finding areas

L&T, 18.1-18

We have already discussed how an integral corresponds to an area.
Example 6.1:

Evaluate the area A under y = x2 from x = 1 to x = 3.

Solution:

A =
∫ 3

1 x2 dx which is 27/3− 1/3 = 26/3, see Fig. 6.1.

6.1.1 Area between two curves

Example 6.2:

Find the area A of the region bounded by y = ex and y = 1− x, for x ranging from 0 to 1, see
Fig. 6.2.

Solution:

From the graph we see that ex is above 1− x, so that

A = (area below y = ex)− (area below y = 1− x)

=
∫ 1

0
ex dx−

∫ 1

0
(1− x) dx

=
∫ 1

0
(ex − 1 + x) dx

=
(

ex − x +
x2

2

)1

0

=
(

e− 1 +
1
2

)
− 1

= e− 2 +
1
2

≈ 1.2183 .

Here we have made the optional choice to combine the two integrands before evaluation of
the integral.

69
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Figure 6.1: The surface below x2 between 1 and 3.
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Figure 6.2: The area between 1− x and ex for x between 0 and 1.
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Figure 6.3: Integration as the sum of area of small strips.

Figure 6.4: A surface of revolution.

6.1.2 Basic Derivation of Area Formula

L&T, 18.1-18

To find area beneath the curve y = f (x) between x = a and x = b, we divide the area into strips as
shown in Fig. 6.3. Let the thickness of strip at x be δx. The height at x is f (x), and therefore the area of the
strip is δA ≈ f (x)δx. Now sum up all strips from a to b. The areas is

A ≈
b

∑
a

f (x)δx.

In the limit that δx becomes infinitesimal (i.e., approaches zero), we replace δx by dx, the ∑b
a by

∫ b
a and so

A =
∫ b

a
f (x) dx. (6.1)

6.2 Volumes of Revolution

L&T, 19.1-11

If we take area under the curve y = f (x) between x = a and x = b, as above, and then
rotate it around the x axis through 360◦ we sweep out a volume called a volume of

revolution V.

This situation is shown in Fig. 6.4. Clearly V has an axis of symmetry, i.e., the x axis. Many volumes that
occur in practice have such an axis. We can use integration to find the volume.
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�

��

Figure 6.5: The volume of a small disc.

Figure 6.6: The surface of revolution for y = (1/x), 1 < x < 2.

Again divide the area into strips of width δx. Since the height is f (x), when we rotate the strip we get
a disc of radius r = f (x), see Fig. 6.5. The area of this disc is πr2 = π f (x)2, and the volume of the disc is
δV = πr2δx. The total volume is again a sum,

V =
b

∑
a

πr2δx = π
b

∑
a

f (x)2δx.

Now take limit where δx becomes infinitesimal, and thus

V = π
∫ b

a
f (x)2 dx.

This is the formula for the volume of a solid of revolution.
Example 6.3:

Find the volume formed when the curve y = 1/x, between x = 1 and x = 2 is rotated around
the x axis, see Fig. 6.6

Solution:
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Figure 6.7:

V = π
∫ 2

1
(1/x)2 dx

= π (−1/x)2
1

= π(−(1/2)− (−1))
= π/2 .

Example 6.4:

Find the volume formed when equilateral triangle with corners at O = (0, 0), A = (1,
√

3),
B = (2, 0) is rotated around the x axis, see Fig. 6.7.

Solution:

Along OA the curve is y =
√

3x, along AB the curve is y = 2
√

3−
√

3x. Thus

V = π
∫ 1

0
(
√

3x)2 dx + π
∫ 2

1
(2
√

3−
√

3x)2 dx

= 3π
(

x3/3
)1

0
+ 3π

(
−(2− x)3/3

)2

1

= π + π(0 + 1)
= 2π.

6.3 Centroids (First moment of area)

L&T, 19.12-22
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6.3.1 First moment of the area about the y axis

Again consider curve y = f (x) from a to b, divided into strips of thickness δx. The area of the strip is
given by (δA ≈ f ((x))δx). The total area is given by the sum,

A ≈
b

∑
a

δA =
b

∑
a

f (x)δx →
∫ b

a
f (x) dx.

If the strip is very thin then all of it is approximately at a distance x from y axis. If we now add up NOT
δA but instead δA times x, i.e., δA “weighted” by x, we get the first moment of the area about the x axis,

Mx ≈
b

∑
a

xδA =
b

∑
a

x f (x)δx →
∫ b

a
x f ((x)) dx .

This is usually called Mx, even though it is the first moment around the y axis.
Example 6.5:

Find the first moment of area under y = 1 + x + x2 from x = 0 to x = 2 about the y axis.

Solution:

Mx =
∫ 2

0
x(1 + x2 + x3) dx

=
∫ 2

0
(x + x2 + x3) dx

=
(

x2/2 + x3/3 + x4/4
)2

0
= 2 + 8/3 + 4
= 26/3 .

Example 6.6:

Find the first moment of the area under y = e−x from x = 0 to x = 1 about the y axis.

Solution:

Mx =
∫ 1

0
xe−x dx.

Integrate by parts: u = x, du/dx = 1, du = dx, dv = e−xdx. Therefore dv/dx = e−x, and thus
v = −e−x,

Mx =
(

xe−x)1
0 −

∫ 1

0
(−e−x) dx

= −1
e
− 0 +

∫ 1

0
e−x dx

= −1
e

+ (−e−x)1
0

= −1
e

+ (−1
e

+ 1)

= 1− 2
e

= 0.2642 .
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Figure 6.8: Subdividing the strips of width δx in ones of height δy.

6.3.2 First Moment of the area about the x axis

Now consider the same strip of thickness δx. On this strip y goes from 0 to f (x). Divide strip into
segments of length δy as shown in Fig. 6.8. The area of such a segment is δyδx. The total area of strip is
δA ≈ ∑

f (x)
y=0 δyδx. In the limit that δy becomes infinitesimal we get

δA
∫ f (x)

y=0 dyδx

= (y) f (x)
0 δx

= f (x)δx,

as before. Now instead of summing segments we can weight each of them by the value of y to get

δMy =
f (x)

∑
y=0

yδyδx

= (
∫ f (x)

0
y dy)δx

= (
y2

2
) f (x)

0 δx

=
1
2

f (x)2δx

To find My we have to add the contributions of all strips

My =
b

∑
a

δMy

=
b

∑
a

1
2

f (x)2δx

=
1
2

∫ b

a
f (x)2 dx

This is the formula for the first moment of the area about the x axis (This integral is same as that for the
volume of revolution except for the factor 1

2 outside the integral rather than π).
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Example 6.7:

Find My for area under curve y = 1 + x + x2 from x = 0 to x = 2 (same area as in example
xxxx(1))

Solution:

f (x) = 1 + x + x2 ,

f (x)2 = (1 + x + x2)
2

= 1 + 2x + 3x2 + 2x3 + x4 .

Therefore

My =
1
2

∫ 2

0
(1 + 2x + 3x2 + 2x3 + x4) dx

=
1
2

(
x + x2 + x3 +

x4

2
+

x5

5

)2

0

=
1
2

(
2 + 4 + 8 + 8 +

32
5

)
= 11 +

16
5

=
71
5

= 14.2 .

6.3.3 Centroid of a plane area

For any plane shape with area A, the centroid is a point with coordinates (xC, yC) given by
xC = 1/AMx, yC = 1/AMy, where Mx is first moment of area about the y axis, and My is

first moment of area about the x axis.

Example 6.8:

Find the centroid of the area under y = 1 + x + x2 from x = 0 to x = 2 using the previous two
examples.

Solution:

We know that Mx = 26/3 and My = 71/5, and we just need to determine A,

A =
∫ 2

0
(1 + x + x2) dx

= (x + x2/2 + x3/3)2
0

= 2 + 2 + 8/3
= 20/3 .

Therefore

xC =
Mx

A
=

3
20

26
3

=
26
20

= 1.3 ,

yC =
My

A
=

3
20

71
5

=
213
100

= 2.13 .
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6.3.4 Meaning of the centroid

If we have thin plate with constant thickness then the centroid is the position of centre of mass (C of
M). The C of M is the point at which all mass can be regarded as acting. Let mass per unit area be
ρ: This will be constant if the thickness is constant (and material is of uniform composition). The total
mass m = Aρ where A is area. Turning effect about y axis of mass m at (x, y) would be mx = Aρx.
A strip of thickness δx, height f (x) has area f (x)δx. Mass would be ρ f (x)δx. Total turning effect is

∑b
a xρ f (x)δx →

∫ b
a x f (x)dx = ρMx, therefore Aρx = ρMx, therefore xC = 1/AMx.

6.4 Second Moment of Area

The first moment of area (about the y axis) was

Mx ≈
b

∑
a

xδA =
b

∑
a

x f (x)dx →
∫ b

a
x f (x) dx.

Similarly second moment is same but with x2 instead of x,

δx =
b

∑
a

x2 ,

δA =
b

∑
a

x2 f (x)dx →
∫ b

a
x2 f (x) dx .

Example 6.9:

Find the second moment of area under y = 1 + x + x2 about the y axis from x = 0 to x = 2.

Solution:

δx =
∫ 2

0
x2(1 + x2 + x3) dx

=
∫ 2

0
(x2 + x3 + x4) dx

=
(

x3

3
+

x4

4
+

x5

5

)2

0

=
8
3

+
16
4

+
32
5

=
40 + 60 + 96

15

=
196
15

= 13
1

15
.

Note: To find second moment about x axis is more complicated:

δy =
∫ b

a

1
3

f (x)3 dx.

This will not be done here.
Note: Recall that first moments are used in calculating centroids which are related to centres of mass.

Second moments are used in calculating moments of inertia of flat planes.
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Chapter 7

Differential Equations

7.1 introduction

A differential equation (DE) is any equation with a differential in it.

Examples:

(a) dy
dx = 1,

(b) dy
dx = x2,

(c) dy
dx = y,

(d) x dy
dx + 2y = cos x,

(e) d2y
dx2 + 2 dy

dx + 3y = 0.

Differential equations occur in many models of real-world situations. One particular examples when we
consider rates of change, e.g.,

(f) the concentration in C a chemical reaction dC
dt = a− kC,

(g) (explosive) population growth dN
dt = αN,

(h) simple harmonic motion d2x
dt2 = −ω2x,

(i) motion under the influence of the earth gravitional field, m d2y
dt2 = −mg.

We would really like to classify such equations by their order.

The order of a DE is the highest derivative contained in it.

Thus (a), (b), (c), (d), (f), (g) are first order, and (c), (h), (i) are second order. In this course we only
consider first order DEs.

Solving DEs is sometimes called integrating them, since for the simplest types this is exactly what we
do. Just as for integration we draw up a list of standard types that we know how to do.

Most solutions of DEs contain constants. These are just like constants of integration, and arise from
the fact that the derivatives of these constants is 0. We always get as many arbitrary constants as the order
of the equation. The general solution will include these arbitrary constants. If we have extra information

79
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apart from the DE itself we can find the arbitrary constants. This extra information is sometimes called
“initial conditions” or “boundary conditions”. Once the arbitrary constants are known we have the actual
solution.

We shall study several types of DEs to facilitate solution, but let’s first look at two simple examples.
Example 7.1:

Solve the DE
dy
dx

= x2 − 2,

given that y = 1 for x = 0.

Solution:

Integrate both sides of the equation,

y =
∫ dy

dx
dx =

∫
(x2 − 2)dx =

1
3

x3 − 2x + k.

At x = 0, y = 1, which implies k = 1. Thus

y(x) =
x3

3
− 2x + 1.

Example 7.2:

Find the general solution of cos x dy/dx + 2 sin x = 0.

Solution:

Rearrange as

dy
dx

= −2
sin x
cos x

= −2 tan x .

Integrate
y = −2 ln(sec x) + k.

7.2 Some special types of DE

7.2.1 Separable type

Equations of the form
dy/dx = f (x)g(y)

are called separable. They are dealt with in the following way: Divide both sides by g(y), and integrate
both sides with respect to x, ∫ 1

g(y)
dy
dx

dx =
∫

f (x) dx,∫ 1
g(y)

dy =
∫

f (x)dx .

Now do both integrals.
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Example 7.3:

Solve the DE
dy
dx

= 2xy2

, given that y = 1/2 when x = 0.

Solution:

Divide by y2, and obtain
1
y2

dy
dx

= 2x.

Now integrate both sides with respect to x∫ 1
y2

dy
dx

dx =
∫

2x dx ,∫ 1
y2 dy = x2 + k ,

−1
y

= x2 + k ,

y = − 1
x2 + k

.

This is the general solution, but we know that at x = 0, y = 1/2. Substituting this we find that
1/2 = −1/k, therefore k = −2 and

y = − 1
x2 − 2

=
1

2− x2 .

Example 7.4:

Find the general solution of

2y(x + 1)
dy
dx

= 4 + y2.

Solution:

Rearrange as
dy
dx

=
4 + y2

2y(x + 1)
.

So here f (x) = 1/(x + 1), g(y) = 4+y2

2y . Divide by g(y),

2y
4 + y2

dy
dx

=
1

x + 1
.

Integrate both sides with respect to x∫ 2y
4 + y2

dy
dx

dx =
∫ 1

x + 1
dx ,∫ 2y

4 + y2 dy = ln(x + 1) + k ,

ln(4 + y2) = ln(x + 1) + k .
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We write k = ln A, with A also arbitrary, but positive. We find

ln(4 + y2) = ln(x + 1) + ln A = ln(A(x + 1)),

Thus 4 + y2 = A(x + 1), or isolating y,

y = ±
√

A(x + 1)− 4.

Example 7.5:

N(t) satisfies the DE
dN
dt

= αN.

Given that N = 10 at t = 0 find N at t = 3.

Solution:

Here f (t) = α, i.e., a constant, and g(N) = N, so

1/NdN/dt = α ,∫ 1
N

dN
dt

dt =
∫

α dt ,∫ 1
N

dN = αt + k ,

ln N = αt + k ,
N = ekeαt ,
N = Aeαt .

Since at t = 0, N = 10, we have A = 10, and

N = 10eαt .

At t = 3, N = 10e3α.

7.2.2 linear type

These have form,
dy
dx

+ p(x)y = q(x) (7.1)

Method as follows

Step 1 Find indefinite integral of p(x) and call this s(x) (no constant of integration needed),

s(x) =
∫

p(x) dx ,

and thus ds/dx = p.

Step 2 Multiply both sides of (7.1) by es(x),

es dy
dx

+ es py = esq .

Since p = ds/dx we have

es dy
dx

+ es ds
dx

y = esq . (7.2)
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Step 3 Note that
d

dx
(es) =

d
ds

(es)
ds
dx

= es ds
dx

.

Note also that
d

dx
(yes) =

dy
dx

es + y
d

dx
(es) = (es)

dy
dx

+ y(es)
ds
dx

.

This is exactly the l.h.s. of (7.2). Rewrite eq. (7.2) as

d
dx

(yes) = qes . (7.3)

Step 4 Integrate both sides with respect to x,

yes =
∫

qes dx + k .

Hence

y = e−s
[∫

qes dx + k
]

.

N.B. Remember the method not the final formula!
Example 7.6:

Find the general solution of
dy
dx

+ (tan x)y = 3 cos x . (7.4)

Solution:

Here p = tan x so s =
∫

tan x dx = ln(sec x) (no constant of integration needed here), es =
eln(sec x) = sec x. Multiply both sides of (7.4) by es = sec x:

sec x
dy
dx

+ sec(x) tan(x)y = 3 cos(x) sec(x) .

The l.h.s. is the differential of esy so we find

d sec(x)y
dx

= 3 .

Integrate this and find
(sec x)y = 3x + k .

Thus, finally,
y = (3x + k) cos x .

Example 7.7:

Solve the DE

x
dy
dx

+ 2y = 4x, (7.5)

given that y = 0 when x = 1.

Solution:
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Rearrange (7.5) ,
dy
dx

+
2
x

y = 4 , (7.6)

which is of linear form with p = 2
x . We find

s =
∫

p dx =
∫ 2

x
dx = 2 ln x = ln(x2) ,

and es = eln(x2) = x2. Multiply (7.6) by es = x2, and find

x2 dy
dx

+ 2xy = 4x2 .

the l.h.s. is differential of esy = x2y. Integrate this and find

x2y = 4x3/3 + k , or

y = 4x/3 + k/x2 .

This is the general solution. We know that when x = 1 then y = 0 so

0 = 4/3 + k/1

. Therefore k = −4/3 and

y =
4
3
(x− 1

x2 ) .

7.2.3 Homogeneous Type

We first need to define a function of two variables:

If f (x, y) is a function of 2 variables, it delivers a number on specification of x and y.

Examples:
x + y, y cos(πx), ln y

x2+y2 .

If x = 1 and y = 2 in the above we get 3, −2, 1
5 ln 2.

Now we can define a homogeneous function:

A homogeneous function of 2 variables is one where we have a sum of terms all of which
have the same total power (called degree).

Examples

function degree
x2 + xy + y2 2
x + 2y 1
x2

y + y2

x 1

1 + x
y + x2

y2 0
xy 2
x2 + y not homogeneous
x + y + 1 not homogeneous

There is a simple test to see if f (x, y) is homogeneous. Replace x by λx and y by λy to get f (λx, λy). If
f (λx, λy) = λn f (x, y) then f is homogeneous with degree n.
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Example 7.8:

(a) f (x, y) = x + 2y:

f (λx, λy) = λx + 2λy = λ(x + 2y) ,

and f is homogeneous with degree 1.

(b) f (x, y) = 1 + x
y + x2

y2 :

f (λx, λy) = 1 +
λx
λy

+
λ2x2

λ2y2

= 1 +
x
y

+
x2

y2

= 1 f (x, y)

= λ0 f (x, y) ,

which is therefore homogeneous of degree 0.

(c) f (x, y) = cos
(

x
y

)
.

f (λx, λy) = cos
(

λx
λy

)
= cos

(
x
y

)
which is therefore homogeneous of degree 0.

A homogeneous DE is one of type dy
dx = f (x,y)

g(x,y) , with g and f both homogeneous and of the
same degree.

Homogeneous DEs can be made separable by the substitution y = xv. We shall demonstrate this by
means of examples:
Example 7.9:

Find general solution of
dy
dx

=
x + 2y
2x− y

.

Solution:

Put y = xv(x), then dy
dx = v + x dv

dx , so

v + x
dv
dx

=
x + 2xv
2x− xv

=
1 + 2v
2− v

.

therefore

x
dv
dx

=
1 + 2v
2− v

− v =
1 + v2

2− v
,

dv
dx

=
1
x

(
1 + v2

2− v

)
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which is separable. This can be solved in the standard way,( 2− v
1 + v2

) dv
dx

=
1
x

,∫ ( 2− v
1 + v2

) dv
dx

dx =
∫ 1

x
dx ,∫ 2− v

(1 + v2)
dv = ln x + k ,∫ 2

(1 + v2)
dv− 1

2

∫ 2v
(1 + v2)

dv = ln x + k ,

2 tan−1 v− 1
2

ln(1 + v2) = ln x + k .

And we conclude that

2 tan−1 ( y
x
)
− 1

2
ln
(
1 +

y
x
)

= ln x + k .

(We can also replace k with ln A.)

Often we need to rearrange the equation first to get a homogeneous form, as in the following example.

Example 7.10:

Solve
xy

dy
dx

− y2 = 3x2 ,

given y = 1 when x = 1.

Solution:

Rearrange as
dy
dx

=
3x2 + y2

xy
.

This is therefore a homogeneous DE. We substitute y = xv,

v + x
dv
dx

=
3x2 + x2v2

x2v
=

3 + v2

v
=

3
v

+ v .

We can now turn the crank,

x
dv
dx

=
3
v

,∫
v

dv
dx

dx =
∫ 3

x
dx ,

v2

2
= 3 ln x + k ,

1/2y2/x2 = 3 ln x + k ,

y2 = 2x2(3 ln x + k) ,

which is the general solution. Imposing the condition that for x = 1, y = 1, we obtain 1 =
2(0 + k), and therefore k = 1/2. The solution is thus

y2 = 2x2(2 ln x + 1/2).
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7.3 Bernoulli’s Equation

Bernoulli’s equation take the form
dy
dx

+ p(x)y = q(x)yn .

In order to solve it, we convert it to linear type. Multiply both sides by y−n(1− n),

(1− n)y−n dy
dx

+ p(x)(1− n)y−n+1 = q(x)(1− n) .

Now substitute z = y1−n, using
dz
dx

=
dz
dy

dy
dx

= (1− n)y−n dy
dx

.

This leads to the equation
dz
dx

+ (1− n)p(x)z = (1− n)q(x) .

If we then define p̃(x) = (1− n)p(x) and q̃(x) = (1− n)q(x), we have an equation of linear type, which
can be dealt with through an itegrating factor.
Example 7.11:

Solve
dy
dx

+
1
x

y = xy2.

Solution:
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