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Introduction

Here you find the lecture notes for the first semester of the course “Mathematics for Physicsists”. These
notes are terse, but should cover more-or-less what has been said in class. You can use them as a guide to
the material you are expected to be able to deal with, and we give ample reference to the two textbooks
(Lambourne and Tinker, “Basic Mathematics for the Physical Sciences”, denoted as 1.xxx, and Tinker and
Lambourne, “Further Mathematics for the Physical Sciences”, denoted as 2.xxxx). You'll notice that we
jump through those books in a rather random order, but your are expected to read up on those parts that
you find difficult, or are not covered in enough detail in the notes.

Niels Walet, Manchester, 2002
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Chapter 1

Introduction

1.1 Why mathematics for physics?

At first you may ask yourself the question why combine mathematica and physics, if they can be taught
as almost fully independent subjects in your A-level courses.

The answer is of course “because they are taught as independent subjects”! Much of mathematics —
most of the calculus and algebra discussed in this course — was originally developped to deal with the
problems arising from the development of physics in the 18th and 19th century. Actually, it was often
hard to distinguish a mathematician from a physicist!

1.2 Mathematics as the language for physics

That brings us automatically to our next subject, the fact that part of mathematics was developped to
describe real-world problems, and thus is the natural language of physics. Let us study this issue by
looking at a number of examples.

Example 1.1:

Describe the motion of a particle under a constant force

Example 1.2:

Discuss the equilibrium of forces in a spiders web.

Example 1.3:
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Chapter 2

Revision

2.1 Powers, logs, exponentials

L&T, 1..6
2.1.1 Powers
L&T,1..1.2.4
Here we summarise the properties of the powers.
2.1.2 The product of two powers
First of all the product of two powers,
a*a¥ =a*ty (2.1)

e.g., 3236 = 38, and 31/23%/2 = 32 (we see that x and y do not have to be integers (whole numbers)).
Evaluate 57/1053/10,

The power of a power

If we take the power of a power, we multiply the exponents,
(a*)! =a" (2.2)

eg., (23)2 = 8 = 64 = 23%2 = 26 = 64. This again works for x,y not integers. Evaluate
21/443/8,

Relation with roots

If the exponent is 1/n we are taking the nth root of 4,
a/" = aq, (2.3)
e.g., 23 = /2,23 = /2. If x = av then x" = a. This can be shown by taking both sides to the power 1,
Xt = (al/")n =a =a
The number 7 is often taken to be an integer, but it does not have to be. (E.g., (31/9%)%% = 3.)

3
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Figure 2.1: A plot of the exponential exp(x) and exp(—x).

Zeroth power of a number

If we take a number to the power zero, we find
a’ =1 for any a > 0. (2.4)

This follows from a%* = a**9 = 4%, and therefore a° = 1. (Note that there is a slight problem with 0°:
0¥ = 0 for x > 0. One usually defines 0° = 1.)

Negative powers and fractions
If we take a number to a negative power, we write the result as a fraction involving a positive power,

_ 1
a Y= a7 (25)

since a~¥a* = a~*t¥ = 40 = 1. Therefore a™* = a% Eg,2 1 =1/2.

Common error

Remember that

AtV =g*a¥ CORRECT!!, (2.6)
and not

AtV #£a* +aY WRONG!! (2.7)
As an example, 237° = 28 = 64, but 23 + 25 = 8 + 32 = 40.

2.1.3 Exponential Function

L&T,1..6.2

The exponential function is a special case of a power, where y = e¥, with e = 2.71828.... (Euler’s number).
One also writes exp(x) instead of e*.

As we can see from Fig. e is never less than 0 for any x. From the properties of powers we know
thate™ = elx This function is also shown in Fig. and is positive as well.

Differential (derivative w.r.t. x) of e¥ is €%, i.e.,

de*

i

e?(
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5

Yo

X

Figure 2.2: A plot of the natural logarithm In(x) and its derivative 1/x.

(This is the only function with the property that the derivative equals the function itself.)
If y = e** then % = ae®* (this is a form of the chain rule, which will be discussed later), e.g., if y = 3e7*

then d—z =3 x 7e’% = 21¢7*.

Example 2.1:

Discuss exponential growth/decay.

Exponential growth or decay is ruled by the form N(t) = Nge”.. For a < 0 we have decay,

dN
for a > 0 we have growth. From the derivative, E(t) = Npae" = aN(t) we see that this
arrises when the change in N is proportional to the number present. Examples are population
growth, radioactive deay; ....

2.1.4 The Logarithmic Function

Relation between Logs and Exponentials

The inverse f ! of a function f is defined such that if y = f(x), then x = f~1(y).

The functions In(x) and exp(x) are the inverse functions of each other. This means that if y = In(x) then
x = ¢é¥. The reverse is also true: if x = ¢/ then y = In(x). Clearly it follows that, using these relations,

exp(lnx) = ¥ =¢V =y,

In(expy) = In(¢Y) =Inx=y.

A graph of the logarithm is shown in Fig. If we swap the x and y axes, we recognise the exponen-
tial. Normally we use logs to base e (inverse of e*)- called natural logarithms, hence the name In(x), but
we also write

log(x) = In(x)
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Logs to other bases

Justasy = Inx = x = &Y for the logarithm corresponding to base ¢ (i.e., the inverse of ¢*) for other bases
we have y = log,x = x = a. Here we use the notation that if we mean log to base, say, 10 we write
log,,(x),ie., if y = log,,(x), x = 10Y.

It may help you to remember that a logarithm tries to extract a power from a number, e.g. the log; 0
extract the power of 10 from a number.

Change of base
Using this we can change from one base to another. Let y = log;,x, then x = 10Y. Now let b = In10
(or log 10), s0 10 = ¢’. Therefore x = (e?)! = ", so by = Inx, y = lr‘Tx = 11;3—1’6. Hence log,,x = 111?71}6'

Determine & such that log,,(x) = alog,(x).

Differential of In x

If y = In x then
dy 1

dx ~ x

(Remember that the differential of In x is 1/x, not the integral! This is a common error!)

Log of a product

Using the fact that e¥1¢*2 = ¢"17%2, i.e., the product of exponents is the exponent of the sum, we con-
clude that the inverse relation holds for logarithms. Thus, the logarithm of a product is the sum of the
logarithms,

In(y1y2) = In(eMe2) = Ine"1 ™2 = x; + xo.

Example 2.2:

The magnitude of a start is defined as m = log,,(I/I). Explain how I changes if m increase
by one unit.

The new intensity satisfies log;,(I"®" /Iy) = log,,(I°'*/Iy) + 1. Using the properties of the
logarithms, we find that
1019 (1" /Io) = log;o(1°%/Io) + log;, 10
log,o (1" /Ty) = log,,(101°9/Iy)
(IneW/IO) — (10101d/10)
new 1010101

Example 2.3:

An unresolved doube-star has magnitude 7. Find the individual magnitudes, assuming that
both stars have the same one.

Since intensities add up, we have 7 = log;,(2I/Iy) = log;(2) +log, 0(I/Iy) = log;,(2) + m.
Thus we conclude that m = 7 —log;,(2) = 6.69897.
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Figure 2.3: A plot of the sine and cosine.

3 T TT |
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Figure 2.4: A plot of the tangent and cotangent.

2.2 Trigonometric functions
L&T, 1.5.3.1

Trigonometric functions are the sine (sin(x)), cosine (cos(x)), tangent (tan(x) = sin(x)/ cos(x)), cotan-
gent (cot(x) = 1/ tan(x)), secans (sec(x) = 1/ cos(x)) and cosecans (cosec(x) = 1/ sin(x)).

2.21 Trigonometric identities

L&T,1.5.3.2
We shall assume that you are familiar with the sine and cosine of the sum of two angles,
sin(A + B) = sin A cos B + cos A sin B, (2.8)
cos(A + B) = cos A cos B — sin A cos B. (2.9)
We also expect you to know that
cos? 0 4 sin? 6 = 1 (2.10)

for all 6. Substitute A = B in Eq. (2.8), and find sin2A = sin A cos A + cos A sin A, and thus

sin2A = 2sin A cos A. (2.11)
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1L I
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Figure 2.5: A plot of the secans and cosecans.

In 2.9) put B = A, cos2A = cos Acos A — sin Asin A, so

cos2A = cos® A —sin? A. (2.12a)
However from (2.10) we have sin> A = 1 — cos? A so we can rewrite (2.12a)) as
c0s2A = cos>? A — (1 — cos> A) =2cos* A — 1. (2.12b)
Similarly (left as exercise)
cos2A =1 —2sin’ A. (2.12c)
Example 2.4:
Evaluate cos(75°).
cos(75°) = cos(45° +30°) = cos45° cos 30° — sin45° sin 30°

1v3 11 +3-1
= Y-~ =YY" ~ —10.2588
N R RN,

Note: We shall use radians more often than degrees, 180° = 7 radians, so

_Axnm radians
~ T1gp rcEns

o

E.g., cos45° = cos F, sin30° = sin Z. Usually, if there is no degree sign (°) then the angle is specified in
radians.
Example 2.5:

Show from the equations above that

2tan A

tan2A = — .
1 — tan?A

__ sin2A
tan2A = 257
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Other formulae

You will sometimes need other formulae such as

A
sin A + sin B = 2sin(

;L ) cos(
(there are four of these), and
2sin A cos B = sin(A + B) +sin(A — B)

(there are three of these).
One formula you may not have seen before is

asinx + bcosx = Rsin(x + ¢).
To find R and ¢ we use formula (2.8)and find
asinx + bcosx = R[sin x cos ¢ + cos x sin ¢] = R cos ¢ sin x + Rsin ¢ cos x
We equate the coefficient of sin x and cos x on both sides of the equation, and find

a=Rcos¢, b=Rsing

Therefore
a* + b* = R%cos?>¢R? + sin’p = R?,

and thus

R = Va?+1?
We also find Rsing

sin
b/a= =t
/e Rcos ¢ ang,
so
tan¢ = ?
=

and

‘(]) = tan '(b/a). ‘

(tan~! will be discussed later.)
Example 2.6:

Express 3 sin x + 2 cos x in the form R sin(x + ¢).

We find Rcos¢ = 3, Rsing = 2, R?cos?p = 9, R?sin? ¢ = 9, R?(cos® ¢ +sin’¢) = 9 +4 =
13. Therefore R> = 13, R = /13. Also (Rsin¢)/(Rcos¢) = 2/3, and thus tan¢ = 2/3,
¢ = tan"1(2/3) = arctan(2/3) = 0.588 radians = 33.7°.

Let’s end with a physics example.
Example 2.7:

From astronomical data tables (eg http://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html) we
know that we can we can observe an apparent diameter of the planet mars between 3.5 and
25.7 arcseconds. Given the radius of the planet (3390 km), evaluate the distance of closest
approach as well as the largest distance to earth.
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Figure 2.6: The angle under which we see Mars.

3n/2- ' " [— arcsin(x)
— arccos(x)

=

/2

-Ti/2f

-TT-

-31/2c

I
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X

Figure 2.7: A plot of the inverse of the sine and cosine.
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This is a simple trig problem, and it helps (as always) to draw a picture, see Fig. From
that picture we see that with distance d, radius r, the angle under which we see mars satisfies
tan(¢/2) = d/R. Actually, for the small angles under consideration tan(x) = x, if we express

x in radians. Thus
d = 2R/ phi

Realizing there are 3600 arcseconds in a degree (60 second in a minute, 60 minutes in a degree),

we find that we find that
d = 2R3600180/ (7tphi)

Substituting the values given we find a distance of closest approach of 6.38859 x 107 km and

a largest distance of 4.69105 x 10% km

2.2.2 Inverse Trig Functions

arcsin

The two alternative forms y = sin~!(x) or y = arcsin(x) indicate that y is an angle whose sine is x.

Example 2.8:
Find sin~!(1) and sin~1(1/2).

y = sin~!(1) means sin(y) = 1. Therefore y = 90° = 71/2 rads.
y = sin~!(1/2) means sin(y) = 1/2, and thus y = 30° = 77/6 rads.

Note: sin30° = 1/2, and sin150° = 1/2, and sin390° = 1/2, etc., so sinfl(x) is a multivalued function.
We need extra information, e.g., from the engineering situation or common sense to say which angle we

are looking at.
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— arctan(x)
— arccot(x)
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Figure 2.8: A plot of the inverse tangent and cotangent.

The equation y = sin™!(x) means the same as x = siny, (graph of y = sin x but with axis switched), note
-1<x<1.

Note: sin~!(x) is not the same as ;- = sin(x) ~!! The notation is very poor here but unfortunately very
widely used. arcsin x would be better but not too common!

arccos

1

Similarly y = cos™" x = arccos x means cosy = x. Once again, —1 < x < 1.

arctan

y= tan~lx = arctan x means tany = x.
Example 2.9:

Find x given 2 cos x = sin x.

Divide by cos x: 2 = tan x, or x = tan~1(2).

2.3 Polar Coordinates

The position of any point P in two-dimensional space can be specified by giving its (x,y) coordinates.
However we could also say where P is by giving the distance from the origin 0, and the direction we need
to go.

These two quantities are the polar coordinates (r,60) of P. From a right angled triangle we see that
rcos® = x, and rsin @ = y, so ¥ + y? = r2cos?0 + r’sin0 = r?, and thus r = /x2 + y2. (N.B. We always
take positive square root here!) Also £ = :ig;g = tan 6, Therefore § = tan~!(y/x). In this case we must
always draw a diagram. The reason is that two different angles can have the same tangent. The only
relevant once for polar coordinates are that tan 6; = tan,, when 6, = 180° + 6y = 7t + 6;. If P is in first
or second quadrant we use 6, and if P is in third or fourth quadrant we use 6. So always draw a little
sketch!
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Figure 2.9: The meaning of polar coordinates.

— 6
x=-1 e BN

y=-1

Figure 2.10: A sketch of (-1,-1) and polar coordinates.

Example 2.10:

Find the polar coordinates corresponding tox = -1,y = —1.

r=v124+12=/2,and tanf = y/x = :—% = 1. From the sketch we see that § = 225° = %”

2.3.1 Polar curves

Often we wish to draw curves in polar coordinates; the most important example are the Kepler orbits, the
ones resulting from a particle moving in the gravitational fiels of a single orbit, e.g., a single planet/comet
orbiting the sun.

The Kepler orbits can be shown to take the form

1 R51(1 +ecos(¢p—¢'))

Here Ry is a quantity with unit length, determined from masses and gravitational parameters. We now
use this relation (with ¢’ = 0, for simplicity) to find the typical orbits for € = 0, |e| < 1 (we shall choose
—1/2), |e| =1, and |e| > 1 (we shall choose 2).

In order to plot these results we rewrite the relation as

r/Ro=1/(1+ecos¢) ,
and plot the value of r for each ¢ (or a suitably chosen selection).
e=0

This is a circle.
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Figure 2.12: The Keplerian parabola obtained for € = 1.

c=-1/2

In this case it is not very hard to solve the problem: All values of ¢ give a positive r, and the easiest solution
is just to plot a suitable large number of values. Obvious choices are ¢ = 0, 7w/6,7w/4,7/3,7/2,..., and
these immediately lead to the elliptical structure shown in Fig. It can be shown that this is a real
ellipse, with the origin (the sun around which the palnet revolves) as one of the focusses of the ellipse.

e=1

In this case we cannot use ¢ = 7, and we thus conclude that the curve moves away to infinity. Once again
we can draw a large number of points and we find a parabola, see Fig.

e=2

We need to carefully find the allowed range for ¢, see Fig. and we conclude that —277/2 < ¢ < 271/3.
Near the end points r diverges, and we can actually expand the value of r in the behaviour near these two
points (Callenge question: how?) to find the two asymptotes y = + (2/ V3 - \/gx), which as we can see
from Fig. are indeed correct. The curve obtained is a hyperbola.
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L L L \X

n 3

2 W?" 2m
—1F

Figure 2.13: The range where r is positive for € = 2.

-1 -0.5

—2r

Figure 2.14: The Keplerian hyperbola obtained for € = 2.



Chapter 3

Vectors in 2-space and 3-space

3.1 solid geometry

In a 3-dimensional world we have to consider 3-dimensional coordinate geometry rather than 2-dimensional.
First of all we set up a set of 3 mutually orthogonal coordinate axes, usually labeled x, y and z, see
Fig.
"ll%lz of axis is called right-handed, using the cork-screw rule: when rotating from x to y the z-axis is
in the up direction. We can specify any point p by its coordinates (x,y,z). From 2D geometry we know
that 0Q? = x? + y%. Thus
OP? = 0Q>+ 22 = x> + > + 22

If we call, as is conventional, OP = r, then

rZ:x2+y2+zz.

3.2 Vectors and vector arithmetic

3.2.1 Whatis a vector?

In order to understand what a vector is we must distinguish carefully between:

'\ 7.
P=(x,y,2)
z
: B
e Y
X

Figure 3.1: 3d geometry

15
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Scalars: These are specified by (i) their units, and (ii) the number of units. Together we refer to this as their
magnitude. Examples are length, density, time, temperature, speed, etc.

Vectors: These are specified by (i) their units, (ii) the number of units and (iii) a direction. Examples are
velocity, acceleration, force, heat flux, etc.

—

A short word about notation: we shall use the notation AB for a vector pointing from A to B, and a

for an abstract vector. These notations do not agree with Stroud, but are standard practice! For handwriting,
where we cannot write a boldface letter, we shall use an underline (2 = a) to denote the boldface.

3.2.2 Graphical representation

A

Figure 3.2: A vector represented by a directed line segment

We often represent a vector by a line-segment pointing from a point A to a point B, so that it has both
direction an length, see Fig. The length of the segment AB gives the magnitude and the arrow specifies

the direction. The vector AB is often called a displacement vector, since, unlike an abstract vector, it has

—
a begin- and end-point. We say that the displacement vector AB represents the abstract vector a if the
direction and magnitude agree.

3.2.3 Equality and line of action

C

Figure 3.3: The representatives of two equal vectors.

Two vectors F; and F; are equal if they have the same magnitude (including units!) and direction,
even if their representatives do not act along the same line, see Fig. A vector can be moved parallel to
itself without changing its value.

The line along which the vector points is called the line of action.
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A

Figure 3.4: The negative of a vector.

3.2.4 Negative of a vector
We shall often use the negative of a vector. The vector —F is defined as a vector of the same magnitude as
—
F, but pointing in the opposite direction, see Fig. If F is represented by AB, or loosely (i.e., equality
—
denotes “is represented by”) F = AB, then —F = BA.

3.2.5 magnitude of a vector

—
We use as special notation for the magnitude: AB, |AB| or |a| or a. This is a scalar describing the length
of the vector, and is therefore always positive. It does carry the same units, however.

3.2.6 Multiplication by a scalar

Figure 3.5: A vector, and twice the same vector.

Given a scalar a and a vector F, then aF is a vector of the magnitude |a|F and the same direction as F
if a is positive, and oposite to F if a is negative, see Fig. Thus1-F=F,—-1-F = —F.
3.2.7 Unit vectors

Unit vectors have magnitude 1 (they are dimensionless, i.e., mathematical objects). We often define unit
vectors associated with a physical vector. If # is a unit vector in the direction of a vector F, then, using
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B

A

c

Figure 3.6: Addition of two vectors

Figure 3.7: order of addition of two vectors

our laws of mutiplication, the vector F = Fn, since the factors on both sides have the same direction and
magnitude. From this we learn that

a relation used frequently.

3.3 Vector Addition

Addition of vectors is achieved by moving the starting point of the second vector to coincide with the
endpoint of the first.

3.3.1 Triangle Law

— —
Thus, as shown in Fig. 3.6 the displacement vectors are aligned, and we have AB 4+ BC = AC. If the
displacements represent a, b, and c, respectively we see that a + b = ¢, or “changing sides” ¢ = a + b.
This is called the triangle law of addition. It is used by always drawing displacement vectors that connect
in the order of the addition. Le., in the addition above the endpoint of the representative of a coinides
with the start point of the vector b. The sum vector is often called the resultant.

3.3.2 Parallelogram Law

If we investigate both a + b and b + a, as shown in Fig. we discover that the displacement vectors
form the four sides of a parallelogram (parallelogram law), as well as the fact that the order of addition
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Figure 3.8: Addition of several vectors

Figure 3.9: Associativity of addition

doesn’t matter (commutativity):

a+b=b+a

3.3.3 General Addition

If we wish to add several vectors, we repeat the procedure sketched for two vectors, putting all of them
— — — — — —
end to beginning, AB+ BC+ CD + DE + EF = AF.

3.3.4 Associativity

For number we know that they have the associative property, (a +b) + ¢ = a+ (b + c). Let us investigate
graphically whether such a relation holds for vectors. As we see from Fig.[3.9} this can be written in terms

— = — =
of displacement vectors as AC + CD = AB + CD, an obvious truth.

3.3.5 Closed sets of vectors: null vector

If we add together a set of vectors that returns to the starting point (a closed set of vectors), see Fig.
— — — —
AB+BC+ CA = AA = 0, we get a zero length vector (the null vector, see below).



20 CHAPTER 3. VECTORS IN 2-SPACE AND 3-SPACE

B

C
Figure 3.10: a closed set of vectors

A

Figure 3.11: Components of a vector in two dimensions.

3.3.6 Subtraction of vectors

If we subtract two vectors, we reverse the one with the minus sign (i.e., reverse the direction of the arrow
on that vector) and use the rules for addition, a — b = a + (—b).

3.3.7 Zero or Null Vector

In subtraction if b = a then a — a = 0 (zero or null vector). All null vectors are regarded as equal with
zero magnitude but no natural direction. 0 + a = a + 0 = a for any vector a.

3.4 Vectors: Component Form

3.4.1 Components in 2 dimensions

- - - - . . . .
We look at a general vector r = OA 4+ OB = OA + AC, see Fig. which is decomposed into the sum
of two vectors along the x and y axes. We define 7 as a unit vector in the x-direction, and j as a unit vector

— —
in y-direction. So OA = xi, OB = yj. Thus

r=xityj, Irl=y/(2+p2),

where x and y are the components of r in the x and y directions. The vecor r as represented by the vector
—
OB is called a coordinate vector.

3.4.2 Vectors in 3 dimensions

As shown in Fig. the result in three dimensions is quite similar. Let i, j, k be the right-handed set of
unit vectors in the x, y, z direction, respectively. [A set of vectors is called right-handed if, when turning a
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Z-axis

coecscccleccccsccccccns

Q
~

X-axis

Figure 3.12: Components of a vector in three dimensions.

corkscrew from the first to the second vector, it moves in the direction of the third.] Thus
— — —_— = —
r = OP=0C+CP=0A+AC+CP
= xi-+yj+zk,

where x, y and z are the components of r.

We shall often use the notation (p1, p2, p3) for a vector p = p1i + p2j = psk. Once again the vectors
r and p were given as position vectors, the displacement vector for the point P starting from the origin.
Using pythagoras’ theorem repeatedly we see that r> = x> + y? + 22, and thus |r| = \/x2 + 12 + z2.

3.4.3 Sum and Difference of vectors in Component Form

Let
r = xit+yjt+zuak ,
r = xi+yf+zk ,
then
rt+r = (tx)i+it+y)it@+2)k
n-rn = (-0)itl-p)jitE-n)k
(please verify these geometrically for 2 dimensional space)
Example 3.1:

Given the points A = (1,—4,2) and B = (2,2, —3), find the component from for the vector
—
AB.

_— - —

— _—  — —
We realise that OB = OA + AB, or, OB — OA = AB. We thus find that AB = (i —4j + 2k) —
(20 —2j—k)=(1-2)i+(-4+2)j+ 2+ 1)k = —i+2j + 3k.
3.4.4 Unit vectors
We study OP =r=uxi+ yj+zkorr = (x,y,z), |r| = r.Then the unit vector in the direction of r is
t=r/r=x/ri+y/rj+z/7k,

24242
Clearly |#| = x+ry72+z =1
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Example 3.2:

If r = 8i 4+ 4j — k find r, # and the direction cosines (dc’s) of r.

r=lr|=4/8+42+(-1)2=V81=9 ,

P=r/r=28/%+4/9j—1/9%

The d.c’s are the components of # i.e,, [ =8/9,m =4/9,n = —1/9.

3.4.5 Scaling of Vector
If a = a1i + azj + ask ,and b = byi + byj + b3k, and A and y are scalars, then
Aa+ ub = (Aay + pby)i+ (Aag + puby)j + (Aas + ubs)k
Example 3.3:
Ifa=2i—7j+k,b=23i+2j— 5k, find

@) 2a,
(ii) —3b,
(iii) 3a — b, and

(iv) the unit vector in the direction ofa.

(i) 2a = 4i — 14j + 2k,
(i) —3b = —9i — 6§ + 15k,
(iii) 3a —b = 6i — 21j + 3k — (3i + 2j — 5k) = 3i — 23] + 8k,

s a o 2Ttk 1 i o
(1V)a—g—7\/m—m(21 7j + k)

Example 3.4:

Given the points A = (5,—2,3) and B = (2,1, —2) find: (i) The position vectors of A and B
relative to the origin
—
(ii) the vector AB,
(iii) the position vector of the mid-point P of AB.
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F=mg/2

) . o F: mg

Figure 3.13: A truck on a slope

3.4.6 Physical example
Example 3.5:

A truck of mass 10000 kg stands on a slope that makes and angle of 30° with the horizontal.
1) Find the acceleration of the truck in terms of g.

2) An explosion exerts a force 10° N orthogonal to the surface. Find the resultant force (use
g = 10m/s?).

1) Look at Fig. We see that the force parallel to the plane is %m g, orthogonal %\@m g. The

acceleration is thus % g

2) The new force, choosing the x axis parallel to the slope, and y orthogonal (upwards), is
(10° — 14/310%)j + 5 x 10* = 13397.5j + 5 x 10%. This has size 51763.8 N, and makes an
angle of 15° with the slope, so 45° with the horizontal.

3.5 Vector products

We cannot easily generalise the product of two scalars to that of two vectors. We define new concepts of
products as what has proven to be most useful in practice There are two types of product:

a) The scalar product, that takes two vectors and produces a scalar.
b) The vector product, that takes two vectors and produces a vector.

We shall take each of these in turn.

3.6 The scalar or dot product

The scalar product, also called dot product or inner product, of a and b is written as a - b, and is defined

as
a-b=|allb|cosb,, (3.1)

This is clearly a number (scalar) and not a vector. The angle 6, is the angle between the first and second
vector, and thus

b-a = |a||b|cosby,

= abcos(—0,,)
abcos(6,)
= a-b
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(One usually suppresses the subscript ab on the angle 6.) We thus see that order does not matter, or more
formally, that the dot product is commutative.
Let us look at some special cases

1. ais perpendicular to b. In that case 8§ = 90° = /2, and the cosine is zero: a - b = 0.

2. aisparalleltoa,ie,0=0.a-a= a2. For that reason one sometimes writes a? for a2. Also

i-j=j-k=k-i=0

This is a straighforward application of the previous two properties! A set where each vector is
orthogonal to all the others is called an orthogonal set of vectors; if the vectors also have unit length,
one speaks of an orthonormal set.

It is generally useful to list a few more properties:
1. (ma)-b = (ma)bcost = m(abcosf) = ma-b. (What is (2a) - (2b)?)

2. (a - b)c is the product of the scalar a - b with the vector c. Thus the result has the same direction as
¢, with magnitude (a - b)c.

3. We can divide by a - b since it is a scalar! (Conversely, we can not divide by a vector!)

4. a-(b+c) = a-b+ a-c. (Distributive law). This will not be proven here, but can easily be done
using component form.

Example 3.6:

Simplify (a + b)?

(a+b)? = (a+b)-(a+b)
= (a+b)-a+(a+b)-b
= a-a+b-a+a-b+b-b
= a®+b*+2a-b

3.6.1 Component form of dot product
Let a = ayi + apj + ask, b = byi + byj + bsk, then

. (a1i + axj + azk) - (byi + byj + bsk)
a-b = a1by+axby +aszbs
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Example 3.7:

Find a unit vector which is perpendicular to (1,2, —1) and has y-component zero.

This vector has the form a = (ay,0,4;). Must be orthogonal to (1,2, —1), so
(aX/OraZ) : (1/2/ _1) = 0/

which leads to
ay—a, =0, ay = a; = .

For this to be a unit vector a> = 2a*> = 1, or & = £1/+/2 (we can choose either sign. Explain!).
Thus

a = (7/0/

3.7 Angle between two vectors

Let a and b include the angle 6. By definition a - b = |a|[b| cosf. Thus cos6 = a - b/|al|b], or cos =
a/lal-b/|b|,orcosf = & - b. Thus cos 6 is the dot product of the unit vectors & and b.
Example 3.8:

Consider the vectors u = (2,—1,1) and v = (1,1,2). Find u - v and determine the angle
between u and v.

First Calculate
u-v = u01 + upvy +uzvs = (2)(1) + (=1)(1) + (1)(2) = 3.

Also |u| = v/6and |v| = V6, so

. 1
cosf = no :Lzéz .

|ul|o] 6v6 6
Hence 6 = % (or 60°).

3.8 Work

In mechanics the work performed by a force is defined as the product of the magnitude of the force times
the distance moved in the direction of the force.

From Fig. we see that, since the component of OA along the line of force is OA cos §, where OA
is the distance d travelled, the work is W = d cos6@ F = d - F, and thus work can be evaluated as an
innerproduct.

Example 3.9:

A force F = 2i 4 3j — k N is applied to a particle which is moving along a wire OAB where
OA and AB are straight, and the points A and B are A = (1,0,0) mand B = (2,2, —2) m. Find
the work done.



26 CHAPTER 3. VECTORS IN 2-SPACE AND 3-SPACE

A

S .

>
O F OA cos(0)

Figure 3.14: The work done by the force F if a mass moves from O to A equals OA - F - cos 6.

Along the line OA the work done is F - O—)A,
Wy =(2,3,-1)-(1,0,0) =2]7.
Along the line AB, AB — (1,2,—1), and the work done is
Wr = (2,3,-1)- (1,2, 1) =2+6+1=9].

The total work is thus

\W:2+9:11].\

3.9 The vector product

We have now looked extensively at the scalar product, and now look at the vector product, that returns a
vector. Two standard notations are used
a x b,and a’b. (3.2)

We shall use the first notation. Other terms used are “cross product” or “outer product”.
The vector product of two vectors a and b is defined as a vector, see Fig.

e of magnitude ab|sin 6|
o of a direction orthogonal to both a and b, so that a, b and a x b form a right-handed set

The magnitude of the outer product is exactly equal to the area of the parallelogram with sides a and
b, A = absin#. calculation of the outer product in component form (to be discussed below) is thus an
easy way to obtain this area.

Let n be a unit vector in the direction of a X b, then a X b = absin fn. From the right handed rule we
see thatb x a = absinf(—n) = —a x b, i.e., the vector product is not commutative. Properties of the outer
product:

1. For parallel vectors § = 0 and so a X b = 0, in particular a x a = 0.
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/
axb

a

Figure 3.15: The definition of the outer product.

2. For orthogonal vectord, i.e., the angle 6 between a and b is 71/2, any two of the vectors a, b and
a X b are orthogonal.

3. The coordinate vectors i, j, k:
iXi=jxj=kxk=0.

ixj=k jxi=—k.
jxk=i kxj=—i.
kxi=j ixXk=—j.

4. From a x b = absin 0n we see that (na) x b = (ma)bsinn = m(a x b).
5. ax (b+4c) =a x b+ a x c. Follows most easily from component form (see below).

6. Component form:
Using a = ayi + ayj + azk and similar for vecb, we find
c=axb

=(axi + ayj + azk) x (byi + byj + b:k)

=axbyi X i+ axbyi X j + axb,i x k+
aybyj X i+ aybyj X j+ aybzj X k+
azbxk X i+ azbyk x j+azbk x k

=i(ayb; — a;by) + j(azby — axby) + k(axby, — ayby)

This last line is often summarized in the form of a determinant

i j k i j k
ay ay az| =det|ax ay a;|.
bx by bz bx by bZ

Example 3.10:
Givea = (6,1,3) and b = (—2,0,4), find a x b.

axb=i(1-4—3-0)+7(3-(—2)—6-4)+k(6-0—(—1)-(—2)) = (4,—30,2).
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Example 3.11:

Find a x b given a = i+ 2j — k, and b = 2i — j + k ,and find # the unit vector perpendicular

to a and b.
i 1 2
axb=det|j 2 -1].
kK -1 1

Expand by Row 1: and we geti(2 — 1) —j(1+2) + k(—1—4) =i — 3j — 5k.

L_axb _ i-3j-5k
|a||b] VI+9+25
1
- (i — 3j — 5k)

V35

Other examples:

3.10 *triple products®

The inneer product a - b is a scalar, and we can’t use the result in further vector or dot products. The
outer product a X b is a vector so it may be combined with a third vector ¢ to form either a scalar product
(a x b) - ¢, or a vector product: (a X b) X c.

We shall look at the scalar triple product,

(axb)-c=(la||b|)sinbi - c.

It is clearly a scalar quantity since # - ¢ is a number. It is particularly relevant to study the geometric
interpretation, as in Fig. [3.16}

Figure 3.16: The parallelopipid related to the scalar triple product.

The quantity # - c is the height of the parallelopiped in that figure, adn we find that
|(axb)-c|=|(|a]|b|sinb)||it - c| = Area of base x Height =V

where V is the volume of the parallelopiped. V is independent of the way it is calculated, i.e., any face
may be used as base. Hence

a-(bxc) = b-(cxa)
= c¢-(axb)
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Since scalar product is commutative

(bxc)-a = (cxa)-b
= (axb)-c

All the six expressions are equal! The - and the x may be interchanged as long as product is defined.

3.10.1 Component Form

We know that
a x b = (aybz — azby)i + (azby — a1b3)j + (a1br — axby)k,

then (a x b) - ¢ with ¢ = c1i + cof + c3k,

(a x b)c = (azbs — azby)cy + (azby — arbz)co + (a1by — axby)c3

ay bl C1
det|a by o
as b3 C3

Note that the order of the columns rows is the same as the order of the vectors. a, b and ¢ in the STP.
Example 3.12:

This can be put in determinant form,

Find (a x b) -cgivena =i —2j,b=3j+k,c=i+j—k.

1 0 1
det| -2 3 1 = det (3 1 )—i—det (_2 3) =—-4-2=-6
0 1 -1 1 -1 0 1

3.10.2 Some physical examples
Important physical quantities represented by a vector product are

o Angular momentum: This is defined as the product of the distance from a centre with the momen-
tum perpendicular to this distance;

L:rxp:mrxv.‘

e Magnetic force. The force on a charged particle (charge g) moving with velocity v in a constant
magnetic field B is perpindicular to both v and B, with size commensurate with the outer product

o Torque: The torque of a force describes the rotational effect of such a force (think about moving a
crank). Clearly only the force perpendicular to the crank makes it rotate, hence the definition
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3.11 *Vector Triple Product*

(a x b) x ¢ is perpendicular to both ¢ and a x b, so lies in the plane of a and b. Basic result obtained
easily, is,

(axb)xc=(a-c)b—(b-c)a.
NB. The order and the brackets must not be changed , if we do this will alter the result. If ¢ is normal to
the plane of a and b then (a x b) x ¢ = 0 (Why?)
Example 3.13:

Find (a xb) xcand a x (b xc)givena=i—2j—k,b=2i—j—k,c=1i+3j+2k.

(axb)xec = (a-c)b—(b-c)a
= b5b+3a
= 13i+j— 8k,
x(bxc) = —(b-c)a

~[(b-a)c— (c-a)b)
(a-¢)b—(a-b)c
= 5b—c

—8j— 7k

3.12 *The straight line*

Stralght line through A (with posmon vector a) and parallel to a Vector b. Let P be a general point on L,

then OP = OA + AP = r = a + AP. Since AD is parallel to b , hence AP = Ab (for some scalar A), A may
be positive or negative. Thus r = a + Ab. This is the vector equation of a straight line.

3.12.1 Standard form of L
If r = xi +yj+ zk, and a = ayi + axj + azk, b = byi + byj + bzk the equation
r=a-+Ab,

gives xi + yj + zk = (a1 + Aby)i + (ax + Aby)j + (a3 + Abs)k. Equality of the vectors gives 3 scalar equa-
tions, x = a; + Aby or Lfﬂ =ANy=ay+Abor(y—ay)/by=Aandz =az+ Absor (z—az)/bz = A
Since —co < A < oo, (for different points on L), we find that these three scalar equations give the Cartesian

equations of L as
x—aliy—aziz—agi)‘
by b b3

’ This is called the standard or canonical form.

In standard form:
(i) Equating numerators to zero determines a point on L (i.e., A).

(ii) Denominators give the direction ratios of L (i.e., the direction of the vector b)
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Example 3.14:

Find the position vector of a point on a straight line L and a vector along L whose Cartesian

. 7
equations are 35H = Y22 = =2zl

3
the standard form of L is

Point A: ( — %, 7, %), position vector of A: —%i +7i+ %k. b= %i + 3j — 2k (parallel to L)

Example 3.15:

Example: Find the Cartesian equations of a straight line L through the point a = i —2j + k in
the direction of the vector b = —2j + 3k.

L:r = a+ Ab gives xi + yj + zk = i — 2j + k + A(0.i — 2j + 3k). This gives the following
Cartesian equations of L:

x—1 y+2 z-1
pr— pr— :A_
0 -2 3 (=4)

31
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Chapter 4
Differentiation

4.1 Assumed knowledge

4.1.1 First principles definition

If y = f(x) and x increases from x to x + éx then the change in y is give by dy = f(x + ) — f(x), see
Fig.[.1] The differential is defined as

d—y = lim % = limf(x+5x)_f<x).

dx  5x—00X  $x—0 ox

4.1.2 Meaning as slope of a curve

The derivative can also be interpreted as the slope of a curve, see Fig. If the slope at a given point has
an angle 6, we find that tan 6 is %' In other words, the line y — yp = tan6 (x — xp) is tangent to the curve
at (xo, Yo ).

y+8y

X x+0x

Figure 4.1: The definition of the differential.

33
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________ Y

Figure 4.2: The definition of the differential.

4.1.3 Differential of a sum

The differential of a sum is the sum of differentials,

d(u+0)
dx

du

dx

do
dx’

4.1.4 Differential of product

There exists a simple rule to calculate the differential of a product,

) o
dx — dx dx’

E.g. ify = x?sinx,

dy _ > .
i cos(x) + 2xsin(x)

4.1.5 Differential of quotient

In the same way we can find a relation for the differential of a quotient,

() _ U% —ydv

dx
dx v?

Eg., ify = Sigc”‘,
dy _ xcos(x) —sin(x) _ cos(x) sin(x)

dx x2 x x2

L&T, £9.26-27

L&T, F9.28-30
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4.1.6 Function of a function (chain rule)
L&T, F.9.33-36,7.5-18

Often we take a function of a function. In such a case, where y = f(g(x)) we put z = ¢(x), and find

dy _ dydz

dx dzdx’

This rule is sometimes expressed in words as “the derivative of the function, times the derivative of its
argument”, and you may know it as

Example 4.1:

Find Z—Z for y = cos(Inx).

Putz =Inxsoy = cosz,

dy dy dz . 1  sin(lnx)
dx ~dz’ odx Ty T x

Example 4.2:
Find % for y = sin®(2x — 1).
Putz = sin(2x — 1) soy = 25,

W dyde e
T dede "2 2cos(2x — 1) = 6sin”(2x — 1) cos(2x — 1)

4.1.7 some simple physical examples
Example 4.3:

Given that x(t) = 5¢> m, find the velocity v(t) and the acceleration a(t).

Using the definitions of velocity as rate of change of position, we find that v = ¥ = dd—’t‘ =
10t m/s, and with acceleration as rate of change of velocity, we have s = 0 = & = % =
10 m/s2.

Example 4.4:

For simple harmonic motion (SHM) x = cos(wt). Find the velocity and acceleration.

Use the change rule for differentiation, v = ¥ = —wsin(wt), a = v = —w? cos(wt)
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minimum

maximum

Figure 4.3: The meaning of a minimum and maximum.

4.1.8 Differential of inverse function
L&T, 9.8-13

When we wish to calculate the differential of an inverse function, i.e, a function g such that g(f(x)) = x,
we can use our knowledge of the derivative of f to find that of g.
Example 4.5:

Find the derivative of y = sin~! x.

We use y = sin(x) and calculate Z—; first,

Now cosy = +4/1 — sin? y, but the slope of the inverse sine is always positive. Thus

dy _ (dx\T'_ 1
dx  \dy V12
4.1.9 Maxima and minima
L&T, 9.24-31

2
At a maximum or minimum the slope is 0 so that Z—Z = 0. To find which case it is, we look at 27%,
which can easily be done from a plot of the slope.

Example 4.6:

Find all maxima and minima of y = x(3 — x) and determine their character.

We find that Z—Z =x(—1) + (3 —x)1 = 3 — 2x. For a maximum or minimum the slope must be

2
0. This happens for3 —2x =0, ie., x = % For that value of x, ZTZ —2. So the point x = 3/2,

y = 9/4is a (and the only) maximum.

4.1.10 Higher Derivatives
L&T, F9.21-22

2 3 2 2
Higher derivatives are obtained by differentiation 2 or more times, j% = d(dz/ dx) &y _ dldy/dx])
X x dx dx
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Example 4.7
d d? a3
y=Inx, (TZ =1/x, ﬁ = —xl—z, ﬁ = x%,etc.
Example 4.8:
The equation for simple harmonic motion (SHM) is ‘2272‘ = —w?x. Prove that x = (A cos wt) +

B sin wt satisfies this equation.

We must differentiate twice, start with first derivative, dd—f = (—w)Asinwt + wB cos wt, and

find that
d2
Txdt2 = —w?Acosw — w?Bsin wt
= —w?(Acoswt+ Bsinwt)
—w?x.
QED.

N.B.: SHM not studied here, but in next semester. The constants A, B can only be obtained with extra
input.

4.2 Other techniques

4.2.1 Implicit Differentiation

The equation of a circle x2 + y?> = 42 is not in the form y = f(x), (although it can be rearranged to

y = +va% — x2). In this case it is easier to find % directly without rearranging. Differentiate both sides of

2
the equation x? + y? = a® with respect to x, assuming y to be a function of x. We find 2x + ’% = 0. Now

use sz_f) = Zy%. (Proof: Put z = y? - need %, g—f{ = Z—;% = Zy%.) So 2x + Zy% =0, or
dy _ _*x
dx vy
N.B.: This method usually gives Z—Z in terms of both x and y.
Example 4.9:
Find Z—Z for x? +4x + 3xy + y°> = 6.
Differentiating both sides with respect to x we find
dy 524y
2x +4 —= = =
X+ +3y+3xdx + 3y Tx 0,

we thus conclude that

dy  (2x+4+3y)

dx  (3x+3y?)
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4.2.2 Logarithmic differentiation

L&T, 7.19-25

If a function has a large number of factors it may be easier to take the logarithm before differentiating,
using the fat that the logarithm of a product is the sum of logarithms.
Example 4.10:

\/m\/bfx'

xX—cC

Find % fory =

Iny=In(va+x)+In(vb—x) —In(x—c¢) = %ln(a—i—x) + %ln(b—x) —In(x —¢)

Differentiate both sides with respect to x:

diny _ 1ldy
dx  ydx
So
Ly 11 1
ydx 2(a+x) 2(b—-x) (x—¢)
and thus
dy 1 I - Va+xvb—x
dx 2 \(a+x) (b—x) (x—c¢) x—c

4.2.3 Differentiation of parametric equations

L&T, 7.31-36

Some equations can be written in parametric form, i.e., x = x(t), y = y(t) with t a parameter. We can then
find its differential in terms of the parameter. We shall study this by means of an example only.
Example 4.11:

Given circle of radius 4,
Py =16 (4.1)

2
use the parametric form to find Z—Z and ZTz at (2v/3,2).

The parametric form is
x =4cosf, y=4sinf ,

which clearly satisfies (.I). Now

dy _dydf _ G _ 4cosd _
dx dfdx 4 —4sinf ’

Note: result is in terms of . Then y/4 = sinf = %, 8 = % (must be in first quadrant), and

_ V3 dy _ _ 42y
cos ) = %5° therefore = = —+/3. Now do I

N\»—"N‘&
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Figure 4.4: A schematic representation of the derivative of a vector function.

2 2 2
Note: ZTg d—y/d X

ez’ do?
Ly _ ddy
dx? dx dx
= L cot) = T cote)
= C;ii‘;’;: = (cosec?8)/(—4sin0)
= —(1/4)cosec® 6.

Other examples of parametric curves are

1. Ellipses x?/a* 4+ y*/b*> = 1: put x = acosf and y = bsin9,

2. Parabola x?/a? — y?/b* = 1: put x = acosh§ and y = bsinh .
3. Use of time t, e.g., for x =2t + 1,y = —gt*/2 + 3t.

4.3 Vector functions

In physical (especially mechanics) problems we often have solutions in a form r = r(t), a “vector func-
tion”.
Example 4.12:

A particle moves along a circle with uniform angular frequency, r = icos(wt) + jsin(wt).
Find the velocity.

If we are perfectly naive, we write v = # = —iw sin(wt) + jw cos(wt). This is actually correct!

The velocity is defined as the vector with as components the time-derivative of the components of the
position vector,

v = i +yj + 2k |

It is actually quite illustrative to look at a graphical representation of the procedure, see Fig. ?2. We
notice there that the (vector) derivative of a vector function points is a vector that is tangent to (describes
the local direction of) the curve: not a surprise since that is what velocity is!
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Example 4.13:

When a particle moves in a circle, find two independent way to show that r - # = 0.

1) Use the uniform motion example from above, and we find r - v = —w cos(wt) sin(wt) +
w sin(wt) cos(wt) = 0. This is not a general answer though!

2) Write r - r = constant. (Definition of circle!) Then, by differentiating both sides of the
relation (in the “other” order), we find

dr-r
dt
_dx? P4 2
N dt

0=

dy +22—

= 2xd— +2y 7

dt
=2r- 7
and we have the desired results.
Example 4.14:

Find the velocity of a particle that moves from r; = (1,2,3) tor, = (3,6,7) in 2 s along a
straight line with constant velocity. Also find the position 5 s after passing r{,

Clearly r = rq + vt if the particle is at point 1 at t = 0, We get, substituting ¢ = 2;
(3,6,7) = (1,2,3) + 02,

from which we conclude (solving for each component separately) that v = (1,2,2). At time
t = 5 we have
r=(1,2,3)+(1,2,2)5 = (6,12,13).

4.3.1 Polar curves

Things get slightly more involved (but quite relevant!) when we look at curves in polar coordinates, i.e.,
specified by r(t) and 6(t). From r = r cos(0)i + rsin(0)j we find that
# =(#cos® — rfsin )i + (#sin6 + rf cos )j
= #(cos 0i + sin 0f) + rf(— sin i + cos 07) = i+ r60.

The first unit vector is indeed the one parallel to #; the second one is defined from its expression. There is
some interesting mathematics going on over here,

#-0 = (cos i + sin 0f) - (— sin 07 + cos 0f) =

This is often used to say that r and 6 are orthogonal coordinates, at each point they are associated with
different, but always orthogonal directions!
Example 4.15:

Express the velocity of a particle moving in an elliptic (Kepler) orbit,

1

r=—,
1— 1 cos(6)

in turn of 6. Now calculate the kinetic energy of the particle.
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Figure 4.5: The surface z = f(x,y) = sin(x) sin(y).

Obviously r = —$%¢__j 4 sinf__;j Now differentiate w.r.t. t using the chain and quotient
1—75 cos(0) 175 cos(0)

rules:

Y sinf(1 — J cos(0)) — cos 61 s'm()i N cosf(1 — } cos(f)) —sin61 sin6
(1—1cos(0))? (1—1cos(0))?
)

= 1 Teos@)? ((— sinf)i + (cos(#) — %)]) .
2

The kinetic energy is thus found to be

0F
(1—Jcos(6))*

2 _ cosh

= O T @

1
sin? 0 4 cos? 6 — cos 6 + ZL)

4.4 Partial derivatives

In Figs. 4.5/ and [4.6| we show an example of functions of more than one variable. Clearly it is very easy
to pick out the minima and maxima, since we can make a very visual representation of such a function
as a surface by the identification of the “height” z with the output of the function. In more than two
dimensions, i.e., when we have a function that takes three or more arguments, and returns one value, we
can’t use the visual analogy. So how do we deal with that? We need to generalise derivatives to more
than one dimension.

Let us study the situation in two dimensions, and generalise to three and more dimensions later. We
shall look at a very small part of the surface, as in Fig.[£.7] The change in the function due to taking small
steps in both variables simultaneously (the most general one possible), is

f(x+5x,y+5y)_f(x,y) :(Sxf(x—i_(sx’gi_f(x’y) +5yf(x—|—(5x,y+5y)—f(x—i—éx,y)

5 + oy (42)

where, just as in one dimension, the three dots denote terms of higher power in the small numbers dx and
dy. The expression is not symmetric under the interchange of x and y, and we need to take one more step.
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Sy
05

Figure 4.6: The surface z = f(x,y) = sin(\/m)-

Figure 4.7: A small square dx by Jy on the surface of a 2D function.

The second term can be transformed back to refer to x rather than x 4 x by making an error proportional

to dx. But that corresponds to a term dxdy which is much smaller than the two terms already there if Jx
and Jy are small. Thus

o amy +0) — flay) = e EFED I o foy 2 8) 1)

This show that a general change in the function can be expanded into a change in the individual variables,
keeping the other fixed. In the limit of dx and dy going to zero this gives rise to the partial derivatives,
denoted by a curly 0. In mathematical notation

+.., (43

flx +6x, ?i —fey) % _ ddx (), et (4.4)
f(x/]/ + 5?; — f(x/y) - (3:17; = dtj/ (f(x']/))xﬁxed : (4.5)

Example 4.16:

Given u(x,y) = x° + 2% + xy +y?, find 3% and 3.

M 32 oyt y 40
ox - y y ’
g;l = 04 x*+x+3y%

where the terms are the partial derivatives of each of the four terms in the function.
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Figure 4.8: A cuboid a x b x c.

From f(x +dx,y+dy) — f(x,y) = g—);éx + 3—5@ we obtain that when both partial derivatives are zero
we have an extremum (minimum or maximum or ...), where the function is “flat” in first approximation.
We thus need to solve a simultaneous set of equations for such a thing to occur.

Example 4.17:

Calculate the minimum surface area for a cuboid of size a x b x ¢, Fig. 4.8} for fixed volume V.

The volume V is simply abc. The surface is the area of the six rectangular sides, S = 2ab +
2ac + 2bc. The only problem is the constraint of constant volume. We can use that to eliminate
one of the three variables from the problem, we choose c: ¢ = V/(ab). Thus

2v 2V
S=2ab+ — +—. (4.6)
b a
Now differentiate this with respect to 2 and b, and find
5 g 2,
a a
0S 2V
These must both equal zero, and we get the equations
2V
Zb - aT ’
2V
20 = 2 (4.8)
Substitute the first equation into the Lh.s. of the second equation, and find
a=—Va, (4.9)

which can be rewritten as a(1 — Va®) = 0. Clearly the solution a = 0 is nonsensical (since b
must be infinite), and we find

a=b=c=V"3

and the minimum surface is found for a cube.

4.4.1 Multiple partial derivatives

Multiple partial derivatives are defined straightforwardly as the partial derivative of the partial deriva-

tive,
3 f 9 <82f)'

ox3 ox \ ox2
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Slightly more complicated are the mixed ones,

2f  a [(of
oy 3x<81/)
2f 2 [of
dyox E)y(&x)

Even though this looks complicated, it can be shown that the order of differentiation actually doesn’t
matter!
Example 4.18:

Find all first and second derivatives of f(x,y) = xsiny + cos(x — y).

% = siny —sin(x —y),

gi = xcosy+sin(x —y),
% = 0—cos(x—y),

g;é = —xsiny —cos(x —y),
a‘j;;x = cosy+cos(x —y),
aa;gy = cosy+cos(x —y),

where the last two terms have been calculated in the order indicated in the denominator, and
we see the equality alluded to above.

4.5 Differentiation and curve sketching

Let me start this section by an example. A group of people is sitting around a circular table of radius a.
A single light bulb is suspended above the table. What is the optimal height for the bulb, so that people
have most light on their plates?

The amount of light on each plate is related to the area of the plate perpendicular to the light rays, but
the intensity of light falls like 1/72. Let A be the area of the plate, ¢ the angle the light rays make with
the plate and table, and P the power emitted by the bulb, and r the distance from bulb to the centre of the
plate. Then

L PAsin ¢
4w

This is not yet in a suitable form, but we can express ¢ and r in terms of x, the height above the table,

sing = x/r, r=1x%+a2.

This gives the dependence of L on x as

PA X
4r (x2 +a2)3/2°
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Figure 4.9: The function L(x), see text.

So how do we now choose x. The first thing is to sketch L(x). Let us use P = 100 W, A = 1072 m?, and
a = 1m. The first thing to do is to draw a curve (using whatever tool you prefer), see Fig.
We see that there is a maximum, which we can find by differentiation,

aL_PA[-3  x2x i
dx — 4m | 2 (x2+a2)5/2 T (x2 + a2)3/2
_PAY 5> ospof2 2 2
_EE( —|—a) [x +a —3x}

This is zero when x = :l:%ﬁa, and thus x = 0.707 m. Since f’(x) > 0 below this point and positive
above, this is a maximum.

4.5.1 Global vs. local maximum

The greatest value over a given interval is called a global maximum, the smallest one a global minimum.
A local maximum means that all points near the current one are smaller; a local minimum means that all
points are larger.

A local minimum or maximum is usually determined by a zero derivative (unless the function isn’t
differentiable); a local minimum or maximum can be a global one, but doesn’t have to be.
Example 4.19:

Find the global minimum and maximum of f(x) = x3 —4dx over2 < x < 3.

First look a stationary points, f/(x) = 0 leads to 3x?> —4 = 0 or x = +2/1/3 ~ £1.155. These
points lie within the interval! Now make a table

X f(x)

-2 0
—2/4/3 3.079
0 0
2/v/3  —3.079
3 15

Thus the global minimum is —3.079 (x = 2/ v/3) and the maximum 15 (x = 3), as we can also
see from a sketch, see Fig.

4.5.2 Curve sketching

With all the information we have about functions and derivatives, we can build up a much better picture
of graphs and curves; we can give a few rules that will help us to do much better!



46

CHAPTER 4. DIFFERENTIATION

20,

151 b
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Figure 4.10: The function used in the calculation of the global extrema.

1. Look for symmetries: is the function even or odd?
2. Look for forbidden regions: if y = (x2 — 1)1/2, x2 > 1.
3. Look for the intercept with the axes: x = 0 is easy and y = 0 is usually (much) harder.
4. Look for isolated points where f is not defined (asymptotes).
5. Study the behaviour for large |x]|
6. Study the behaviour for small |x|
7. Look at the derivatives (local minima and maxima, strategic points)
8. Use information on the concavity (second derivative).
Example 4.20:

Sketch the curve y = (x — 1)?(x — 2).

This curve is not symmetric, and is defined for all x; no forbidden regions.

Intercept with x axis: x = 1 and x = 2. With y axis: y = —2.

For large x the function grows as x°.

Derivative (x —1)(3x — 5) is zero for x = 1 (f(x) = 0) and x = 5/3 (f(x) = —4/27).

Concavity: f” = 6x — 8: negative at x = 1 (minimum), positive at 5/3 (maximum).

x f(x)  f'(x) remarks

-2 -36 33

-1 -12 16

0 -2 5

1 0 0 zero and local maximum

5/3 -4/27 0 local minimum
1
8

2 0 intersects x axis
3 4

The result is shown if Fig.
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Figure 4.12: The function x/ (1 + x?).

Example 4.21:
Sketch the curve y = x/ (1 + x2).

This curve is antisymmetric (if x — —x, ¥ — —y), and is defined for all x; no forbidden
regions.

Intercept with x axis at x = 0 only; also intercept with y axis.

For large x y = fﬁ’;zx)z ~1/x—1/x5.

For small x (using geometric series) y = x — x> + .. ..

Derivative (using quotient rule)

dl_(1+x2)—x2x 1—x?

dx — (1+x2)2 (1+x2)2°
.. . 2x(=3+22) . .
This is zero for x = +£1. From the second derivative T2)3 we find that x = 1is a
X
maximum, x = —1 a minimum. Together with y(x = 2) = 2/5, y(x = 3) = 3/10, we can now

sketch the curve, see Fig.
Example 4.22:

Sketch the curve y = %
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— (1+&)/(1-€)

1+¢*

Figure 4.13: The function =

If we take x — —x, then

Cl4et e tet+1
T l—e X e Xex_—1

The function is undefined when ¢ =1, i.e., x = 0.

The function is zero when 1 + ¢* = 0 (i.e., never)!

Forsmallxe*=1+x,so0y=—-1/x—-1+....
For large positive x we can ignore the ones, and y — —1; for large negative x e* is negligible,

andy — 1.

Derivative (using quotient rule)
dl (1 4e*) —ef(1—e¥)  —2eF
dx (1—ex)2 C(1—e¥)?

from which we conclude that it is negative everywhere, no zeroes.
We can now sketch the curve, see Fig.

4.6 *Application of differentiation: Calculation of small errors*

We know that if y = f(x) then
dy . flxton) — fx)

dx 10 ox
Provided that dx is small enough (but not infinitesimally small) % ~ %, SO
. dy
oy ~ —xzix .

Example 4.23:

We can measure the volume of a sphere by measuring its radius r and then use the formula,
V = (4/3)7tr3. Suppose we measure r = 6.3 + 0.02 m. Find the approximate error in V.

Ifr=63mthenV = %n6.303 = 1047.4 m3. The small error ér = 0.02 m will cause an error in
V given by 6V ~ 4V 6r = 47r?6r = 4716.3020.02 = 10.0 m®. Hence

V = 1047.4 +10.0 m°.
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Example 4.24:

We measure the height & of a tower at a distance d, by measuring 4 and the angle « with the
horizontal. We then use the formula tana = (h/d).

Find error in /1 due to an error d« in & assuming d to be known exactly. We solve for i, h =
dtanw, dh/da = d sec? a. Therefore

oh ~ %(Sa = dsec® adu
du

Example 4.25:

Given the relation between current, voltage and resistance, I = V/R, with V =250V, R =
50 ), find the change in the current I 1) if V increases by 1V, and 2) if R increases by 1 Q).

We use the rule for small changes for partial derivatives,

ol ol
ol =~ W(SV + ﬁ(SR.

We find

a1

oV R’

a _ Vv

oOR  R?°
Using the numerical values, we find

51—l><1 250 _ 11 3:—0.08A

— 2 1=
50 52 °"T5 10 25
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Chapter 5

Integration

This chapter should contain partially things you know -essentially the basis of integration- and quite a
few new things that build on that, extending your knowledge of integrals and integration.

5.1 Basic integration

There are two ways of thinking about integration, and they both have their uses. The one we shall con-
centrate on here, is integration as the inverse of differentiation, also call indefinite integration,
o Indefinite integral

[foax =), LR = f)

where F is the inverse derivative (also called “primitive”) of f.
Example 5.1:

Integrate 4x°.

d(x%)
dx
This type of integration is called an indefinite integral. We always get a constant of integration (in this

case “c”) for an indefinite integral.

Note: The result of | f(x)dx is another function of x.

o Definite integral

A definite integral is related to the area under a curve (see Fig. ??)

intl f(x) dx

453 = ,so/4x3dx=x4+c

Plot the curve y = f(x), as in Fig. The shaded area under curve between x = a and b equal a
number A. We can calculate this as ,
A= / xdx,
a

(This is called a definite integral.) This is defined as the sum from x = a to x = b of the area of all the
small strips under the curve, in the limit that they become vanishingly thin.

The two definitions are related by the
e Fundamental theorem of calculus

b b
| Fx)dx = )l = F©) - Fl@)

51
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fix)
| x
a Ox b

Figure 5.1: The area under a curve.

Example 5.2:

Find area under curve y = 2¢3* between x = —1 and x = 1.

The area is given by the integral

1
A = / 23 dx
-1

1
= 2 / e¥dx
-1
1
- 2
2(e/3 —e73/3)
13.3572
Note: There is no constant of integration in a definite integral.
Note: The result is a number not a function.

Final Remark: Some integrals can never be done in terms of known functions.
Example 5.3:

J e dx, flz 1/(x + cosx)dx. For these a numerical method will give results for a definite
integral, e.g., a computer version of summing the area of the strips under a curve.

5.1.1 standard integrals

We can use the “inverse derivative” to look up standard derivatives from right to left, to get a table of
integrals. Many of the integrals in the formula book were obtained this way, Some examples:

dsinx .
= cosx ~ cosxdx =sinx +c¢

dx
dlnx

_1 ~ /ldx:lnx—l—c
x x

1
= qge ~ /e‘”‘dx:fe‘”‘—kc
a

=sin 1x +c

dx
dx V1—x2 /\/1—x2

Let us look at an interesting physics example of integration.
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Figure 5.2: A piston in a cylinder

Example 5.4:

A piston is moved in a cylinder containing an ideal gas (see Fig.[5.2). Calculate the work done
as the enclosed volume changes.

The work done is force times distance. The maginitude of the force is pressure times ares,
F = P x A. If we move the piston by a distance dx, the work done is thus PAéx = P§V. Thus

Vi
W = P(V)dv
Vo

For an ideal gas P(v) = A/V, and we find that

Vl A
W = w7 dV = A[In(V)])} = A(InV; —InVp) = Aln(Vy/Vp)

Note that the argument of the logarithm is dimensionless. This is true of any mathematical
functions we write.

5.2 Rules for integration
5.2.1 Sum rule

[ s+ f@)lax = [gdx+ [ £ ax
Example 5.5:

T
Find / (sinx 4 cos x)dx.
0

/On(sinx—i—cosx)dx = /07T sinx dx + /On cosxdx = [—cos(x) +sin(x)]j = —(=1) — (-1) =2

5.2.2 Constant multiple

/kf(x)dx - k/f(x) dx
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Example 5.6:

Find / Vx(x® = 3) dx.

Expand the integrand;

/ﬁ(x3—3)dx:/(x7/2—3x1/2)dx:/x7/2dx—3/x1/2dx: §x9/2—3§x3/2+c: %x9/2—2x3/2—|—c.

5.3 Properties of definite integrals

For definite integrals we can, using the fundamental theorem of calculus, determine quite a few proper-
ties.

a
1. / f(x)dx =0.
a
a b
2. /b f(x)dx = — / f(x) dx. The definite integral is not just an area!
a

b c b
3. / f(x)dx = / f(x)dx+ / f(x)dx. The value of c is arbitrary, it doesn’t have to be between a
a a c
and b!

4. /bf(x)dx > 0if f(x) > 0.

5.Ifm < f(x) < Mand b > a, thenm(b—a) < /bf(x)dx§ M(b—a).

5.4 Improper integrals

We often integrate over an infinite range. Such integrals are called improper. They are defined a s limits,

/j:of(x)dx = lim /abf(x)dx

a——00

Example 5.7:
0
Evaluate / eXdx.

—00

Apply the definition

0 0
/ efdx = lim efdx= lim (1—¢) =1

— 00 a——o0 Jg a——00

A inite integral is called convergent, if tyhe limit does not exist the integral is called divergent.
Let us look at a physics example
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Example 5.8:

Determine the escape velocity from earth.
We need belance of energies. The initial kinetic energy must equal the work done against
gravity to get the object )of mass m to escape from the gravity field of the earth (mass M,

radius R) CmM
L — [ &M d
2Mv /R 24

Evaluate the integral as above,

o GmM . a1
/R 2 dr = gmM HIE&. . r—zdr
1 1
= 1i 4=
gmMugI;o ( a + R)
_gmM
R

5.4.1 Divergent integrands

Integrals that require special attentions is those where the integrand diverges. We need to take a start-
point just above and below the singularity, and take a limit. A simple and obvious example is

1 1
/ Lix —tim [ Lix = tim[ln(x)]! = lim(=In€) = oo.
0 X elo Je x €l0 €l0

Be extrememly careful when the singularity occurs in the middle of the integration interval.
Example 5.9:

1dx

1
Calculate / -
x

Split the interal into two parts,
1

. —€ 1 . 1
lim —zdx + lim —zdx
elo J-1 x 610 J5 X

2—|—lirr11—i-lim1 = oo.
el0 €  €l0d

The naive answer is 2! So we note that we have to be extremely careful

5.5 Strategy

Since there is no guaranteed method of doing integrals we proceed as follows

1. Draw up a list of as many as possible “standard integrals” that can be done. (This has already been
done for you and is given in the formula book.)

2. When given a new integral you must try to rearrange into one of the standard types. This may
involve some or all of the following
(a) directly rearrangement (rather trivial);
(b) substitution;
(c) integration by parts;
(d) special methods for particular types.
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5.6 Integration by Parts

This is the integral equivalent to the differential of a product. Start with

L(W) = ud—v + vd—u
dx — dx dx’

Integrate both sides with respect to x,

dv du
uvf/uadx—i—/vadx

Now use (dv/dx)dx = dv and (du/dx)dx = du. Rearrange the terms, and find

UY = /udv—l—/vdu.

This last equation is mainly used in the form

/udv: uv—/vdu.

Example 5.10:

Evaluate I = / xe* dx.

Put u = x and e* dx = dv. u part: u = x, therefore du/dx = 1 and du = dx. v part: e*dx = dv
therefore dv/dx = e* and v = [ ¢* du = " (constant of integration not needed here). Thus

I:uv—/vdu:xe“"—/exdx:xex—(e“"—}—c)

Note that the x part of the original integrand (i.e., ) was differentiated, but the e* part (i.e., dv/dx)
was integrated. We obtained a new integral which was easier than the old one because (du/dx) was
simpler than u but [ vdx was no harder than v. It is a requirement that the resulting integral is no more
complicated than the original!

Example 5.11:

Evaluate I = / x% sin xdx.

Put u = x?, dv = sinxdx. du/dx = 2x, therefore du = (2xdx). dv/dx = sinx, therefore
v = [sinxdx = — cos x. We thus obtain

uv—/vdu

x?(—cosx) — /(—cosx)Zxdx

I

= —xzcosx+2/xcosxdx.
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Now repeat this procedure: Put u = x, cosxdx = dv. We find du/dx = 1, and therefore
du = dx. Finally dv/dx = cos x and thus v = sin x.
I = —x?cosx+2 [xsinx - /sinxdx}

= —x%cosx +2xsinx —2(— cosx) + k.

(We have put the constant of integration in at the end.)

Example 5.12:

Evaluate I = /lnxdx.

Even though this does not look like integration by parts, we can use a trick! Use the fact that
the derivative of the logarithm is much more manageable than the logarithm itself, and use a

function v with derivative 1. Thus u = Inx, dv = 1dx, % = %, Z—z =1,du=(1/x)dx,v = x.

I = uv—/vdu

= xlnx—/xl/xdx
= xlnx—/ldx
= xlnx—x+k

Example 5.13:

/2
Find I = / e* cos x dx.
0

Here we can integrate or differentiate e*, and differentiate or integrate cos x, since the integrals
and derivatives of both functions are as simple as the original function. We choose u = e,
therefore du/dx = cosx and v = sin x.

/2
I = (uv)g/z—/o vdu
/2
= (exsinx)g/z—/ sin x e* dx
0
/2
= e”/z—/ sin xe* dx.
0

Now integrate by parts again.

Note: Initially we differentiated u = e*, taking cos x as a derivative. We must use the same
procedure again, and not switch # and v. Le., we must put u = e* and dv = sin xdx. Therefore
u=-¢e* du/dx = ¢*, and thus du = e*dx, dv = sin xdx. It follows that dv/dx = sinx, and so
v = —cosx.

/2
I = e”/z—(—excosx)g/va/O — cos xe* dx

/2
= e”/z—[O—(—l)]—/ e* cos x dx
0

— 67'[/2_1_1
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Bring I to the left-hand side,
2l =¢™? - 1.

1)

and thus, finally,

5.7 Integration by substitution

This is the integral equivalent of the chain rule. If z = f(x) and x = g(t) then the chain rule says,

% = Z—f{ %' We can rearrange this “by multiplying by” dt to get,
dz
dz = ﬁdx
. (This can be proven from the rule for finite steps,
0z 0z
Eét = E(Sx,
which can be rearranged as
0z
0z = —ox.
z= 5 0x

In the limit that dx goes to zero, as it must in the integral, we find the required result). This is the basic
formula we need to convert an integral with respect to a new variable z. It is true as a substitution rule
inside the integral, not as a general equality.

571 Typel

Replace some function of x by z.
Example 5.14:

2

Evaluate I :/ xsin(x?) dx.
0

Substitute z = x? (try this), then dz = (dz/dx)dx = 2xdx. We can only use this substitution
if we can identify 2x dx as part of I. To that end write [ = (1/2) foz sin x? 2x dx. We can now

substitute for x2 = z and for 2xdx = dz, and thus I = % f sin z dz, where the limits still need to
be filled in. Since I is now an integral w.r.t. z, the limits must be starting and finishing values
of z. At the start, where x = 0, z = x2 = 0. At the finish x = 2,z = 4, so

1 4
I = 5/0 sinzdz

1

= E[—cosz]é
1

= —(—cos4+1)
2

~ 0.8268

Note: The integrand, (i.e., the object being integrated) changes from xsin(x?) to (1/2) sinz.
Part of this change is due to the change from dx to dz.

Note: The integration limits change (for definite integrals only).
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Example 5.15:

dx

Calculate the indefinite integral [ = / ——-
as+x

Use substitution, and take z = (x/a), dz = (1/a)dx, x = az.

dx 1
I = /m“;dx

dx
N /u2+azzzadz
a
- /a2(1+22)dz
_ 1/ dz
al) (1+22)

1 -1
= —tan "z +c.
a

Finally we must substitute back using z = x/a,

1
I=—-tan"! ({> +c.
a a

Several standard integrals can be generalised using this substitution (left as exercise).
Example 5.16:

Evaluate I =

1
/ N7 dx

Using the substitution x = az we find

I:/ dz =sin"lz+c=sin"}(x/a+c)

V1-—2z2
Thus
1
—— dx=sin"! x/a-+c
| = (x/a+0)
572 Type2
Replace x by a function of z. Sometimes, instead of putting
2

e.g., z = x°, we replace x directly by putting
x=g(z) . (5.2)

This is really same as using (5.1) since we can rearrange this equation, (i.e., solve for x) to get (5.2). How-
ever, we can work directly from (5.2) by calculating dx/dz. We then use the formula

dx
dx = Edz

(Remember that we also must change limits on a definite integral!)
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Example 5.17:
Eval I ol d
valuate | = / —dax
0o 1+

Put x = 22, dx/dz = 2z, dx = 2zdz. The limits change, x =0 =z =0, x = 4 = z = 2. We
obtain

2 1 2 2z
01+v2 T (4™

22(z41) 2, 2 2
| e | ()
= [2z—2In(z+1))3=(4-2In3) —0=4—2In3 = 1.8028

5.8 Integrals of the inverse of a linear function

The integral [ = /(1)/(ax + b) dx, can be done by substitution, z = ax + b, dx = dz/a, I = 1 [ Ldz =
1(Inz+C). Thus

Q\H

:/(1)/(ax+b)d (In(ax +b) +

5.9 Integrals of a linear function divided by a quadratic
L&T, 15.31-43

We now study the integral I = [(px +¢q)/ (x> +ax +b) dx, i.e., linear over quadratic, where the quadratic
does not factorize.

Step 1 Calculate the differential of the denominator,

%(x2+ax+b) =2x+a.

Use this to rearrange the numerator into form

E@x+a)+(q—pa/2),
i.e., as a constant times the derivative of the denominator plus another constant. We can now split
the integral,
_P / 2x +a B 5 / dx
e SN R A e Iy

The first integral on the r.h.s. can be done using the substitution z = x> + ax + b,

2x +a _ (1, _ 5
/mdx—/de—an—ln(x +ax+b)
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Step 2 The second integral is more complicated, and we deal with

]_/ dx
) X24ax+b

separately. The technique used is based on completing the square, x> + ax +b =

which after the substitution z = x + c leads to a standard integral

/ dz
22 +d?
Depending on the sign we get either an inverse tangent or a ratio of logarithms,

/#dz = 1tan*l(z/d)—i—c

z2 + 42 d
1 1 z—d
./zz—dzdz N Zd/(z— z+d>dz ﬁl <z+d)+c‘
Example 5.18:
4x —1
EValuateI— /m X

61

(x+c)* + 2,

Step 1 Differentiating the denominator gives 2x + 2. Take apart into tow pieces, by rearranging

numerator as 4x — 1 =2(2x 4+ 2) — 5.

[ / 2x +2 dx—S/ dx
N x2—|—2x+3 x2—|—2x+3

Now complete the square for the denominator, and find that

2
242043 = (x+1)242=(x+1)2+V2

]_/ dx _/ dx

Substitute z = x + 1, dz = (dz/dx)dx = dx,

dz
J = /z2+\@2
(1/v2) tan"(z/V2) + ¢

Thus we find

[=2In(x*+2x+3)— (5/V2)tan }((x +1)/V2) +¢
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59.1 Completing the Square

Completing the square is a simple idea that is surprisingly useful. First a definition:

A polynomial is a sum of powers of a variable x (say). The degree of this polynomial is its

highest power.
Let us look at a few examples:
polynomial degree
(@x+1 1 Also called linear, since if we plot
(b) 4x 1 the functions y = x + 1, y = 4x, etc.
(c)ax+b 1 we get a straight line
(dxZ+2x+1 2
(e) —=7x> -3 2 (also known as quadratic)
(fax> +bx+c 2
(8) x3/9 — nx 3 cubic
(h) 12x® +0.001 6

A polynomial of infinite degree is usually called an infinite power series.

Any polynomial of degree 2, i.e., a quadratic, can always be rearranged to have the form a(x + b)2 +c,
as the square of a linear term plus a constant. Bringing a quadratic polynomial to this form is called
completing the square.

5.9.2 Method

“Completing the square” is bringing a quadratic to the form a(x + b)? + c.

In general, if two polynomials are equal, it means that the coefficient of each power of the variable are
equal, since each power varies at a different rate with the variable. So in order to complete the square, we
must equate coefficients of powers of x on both sides. We shall do this by example.

1. Complete the square in x? + x + 1:
Put

24+x+1 = alx+b)>+c
ax? 4 2abx + ¢ + ab?.

Now equate coefficients of x*> on both sides. We find 1 = a, or a = 1. Then compare the coefficients
of x. We conclude 1 = 2ab. Using a = 1 we find b = 1/2. Now equate the constant term, 1 =
ab? + ¢ = 1 + c. We conclude that c = 3/4.

Collecting all the results we find

1 2
Pxtl= <x+2) +

=1
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2. Complete the square in 2x? — x.
Solve 2x2 — x = a(x + b)* + c. We compare coefficients of
x2: 2=a,
x: —1 = 2ab, therefore b= —1/4,
const: 0= ab®+ ¢, therefore c¢=—-1/8.

Thus
) 1 2
) —x=2 — —
X X <x )

x|~

It is often useful to write the constant as

~ |d*  (if cis positive)
| —d? (ifcis negative)

5.10 Integration of rational Functions

5.10.1 Partial fractions

Before dealing with partial fractions, we need to define a rational function.

A rational function is one with the form f(x) = P(x)/Q(x) (Q(x) # 0), where P(x) and
Q(x) are polynomials.

Partial fractions is a method of simplifying a rational function. For the present we shall only consider
rational functions where the degree of the numerator is less than that of the denominator (not equal). If
this is not true then we can convert it into this form-see later (integration section). First factorise the
denominator Q(x) into a mixture of linear and quadratic factors. This can always be done without using
complex numbers (use linear factors only if possible). E.g.,

B —2x b x—12=(x—3)(x*+x+4).

We can now simplify the rational function using partial fractions. We do this by means of examples as
part of the revision.
Example 5.19:

3x—1
2x2—x—1

Simplify using partial fractions.

3x—-1 3x—1
2x2 —x—1 (x—1)(2x+1)

We have factorised the denominator). Now put

3x -1 A B

G-D@x+1) x-1 2xt1

(A, B constants). Multiply both sides by (x — 1) (2x + 2), the denominator of the left-hand side.
We find
3x—1=A@2x+1)+B(x—1). (5.3)



64 CHAPTER 5. INTEGRATION

Now compare coefficients on both sides. First x: 3 = 2A + B, and for the constant term we

find —1 = A — B. We solve these simultaneous linear equations, and find A = %, B = % So

3x—1 2 5

G-Dxtl) 3x-1) 3@xtD)

Alternatively we can find A and B by choosing values for x. If we choose x = 1 then
becomes 2 = 3A + 0B, and therefore A = (2/3). If we choose x = —(1/2) then it becomes
—(5/2) = 0A — (3/2)B, and therefore B = 5/3, in agreement with our previous results.

Example 5.20:

Simplify — (iztl 7 using partial fractions.

x+1 _ x+1 A B C
x(x2—4)  x(x—=2)(x+2) x x—2 x+2

(left as an exercise, A = —1/4,B=3/8,C = —1/8).

Example 5.21:

Simplify m using partial fractions.

x2 A B C D

x-1)x-2° G-1) x-2 " (x—2)2+(x—2)3l

where we have one term for each power of the factor up to the maximum. Multiply by (x —
1)(x — 2)% and equate coefficients.

2 =A(x—2°%+B(x—1)(x—22+C(x—1)(x —2) + D(x — 1).

Substitute x = 2.4 =0+04+0+DsoD =4. x=1.1=—-A+04+0+0s0 A = —1.
Equate the coefficients of x3:0=A+B+0+0,s0B = 1, and the coefficients of constant
term: 0 = —8A — 4B +2C — D, and thus C = 0.

x2 1 1 1

C-DeE-20 G- -2 @-27

Example 5.22:

x+5
x3—1

Simplify

using partial fractions.

First factorise Q(x), x> —1 = (x — 1)(x®> + x + 1). We cannot factorise x> + x + 1 into their
factors with real coefficients. Write

x+5 A B+ Cx

WB¥-1 x—1 x24+x+1

Multiply with -1,
x+5=A(*+x+1)+B+Cx(x—1),
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substitute x = 1: 3A = 6, or A = 2. Equate coefficients of x>: A+ C = 0, C = —2. Equate
coefficients of the constant part: A —B =5, B = —3.

x+5 2 3+ 2x

¥3—1 x—-1 x2+x+1

A rational function is a function of the form f(x) = P(x)/Q(x) where P and Q are both
polynomials.

Integration of such functions are dealt with according to the following procedure:

Step 1 If the degree of P is equal or greater that of Q then rearrange the numerator to get
P(x) = L(x)Q(x) + M(x) (5.4)

where L and M are polynomials and M has lower degree than Q,
Example 5.23:

_2x3+x2+x+1

Bring f(x) = P13 to the form 1)

Put 2x% + 22 + x +1 = 2(x® — x2 +2) + 3x? + x — 3 This corresponds to L = 2 and
é\/lh:?)i%xz +x+3. Thus f(x) = W =L+ % We can clearly integrate L directly
why?).

Step 2 We now have to integrate the new rational function % where M has lower degree than Q. This is
dealt with by

1. factorising Q in linear and/or quadratic factors.
2. using the technique of partial fractions.

We now obtain integrals with one or more of the following types

(@) [ 5t dx: integrates to In(x + a).

(b) [ ﬁ dx: integrates to —%ﬂ

© [ PX*9__ dx: integrates see above (Sec.

x24ax+b

Example 5.24:

Integrate /(3x2 +x43)/(x® — x* 4 2) dx.

This integrand can be rewritten as

3x2+x+3 3x2+x+3 A Bx+C

B—x2+2  (x+1)(x2—2x+2) Y41 _2xt2

To find A, B, C, we need to solve
3x2 +x—3=A(x*>—2x+2)+ (Bx+C)(x +1)

We can get one of the values for almost free, using x = —1: 54 = —1, or A = —1/5. We solve
for the rest by equating the coefficients of identical powers of x,
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x2: 3 = A + B, therefore B = 16/5,

constant: —3 = 2A + C, so that C = —13/5.

We have reexpressed the integral as

/3x2+x+3dx_1/ 1 / l6x —13
xX¥—x24+2"7 5 x—|—1 2x+2
The first term (1/(x + 1)) is easy to integrate and gives In(x + 1). Let us therefore concentrate
on the second term

/ lex—13 /8(2x—2)+5dx

—2x+2 2x+2
x? —2x+2) 5
N 8/ —2x+42 dx+/ 2x+2dx
= 81 -2 2 /7(1
n(x? —2x+2) + T

Here we have used the fact that the differential of the denominator is 2x — 2. The remaining
integral is treated by completing the square,

X2 —2x+2=(x—1)*+1,
which allows us to write 5
_ -1
/mdx—Stan (x—1)

Using the two previous examples we conclude that

/2x3+x2+x+1

_ 1 8. 2 3.
mdx_Zx 51n(x+1)+51n(x 2x +2) stan (x —1)

5.11 Integrals with square roots in denominator

We shall consider only one type

1
—dx
/\/a+bxfx2

The coefficient of x> must be negative, if it is positive we need a different approach which involves hy-
perbolic functions (not discussed here). The method is as follows

1. Complete the square, a + bx — x2 = d2 — (x +¢)?, withc = —b/2 and d% = a + b? /4.
2. Substitute z = x — ¢, which gives us the derivative of the arcsin.

Example 5.25:

dx

Calculate I = / _—
V3 + 4x — x2
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Complete the square: 3 +4x — x> = d? — (x + c)?. Equate the coefficients of each power. x2:

—1 = —1, contains no unknowns. x: 4 = —2c (therefore ¢ = —2). The constant term gives
3=d?—2=4d?—4,and thusd? =7,d = \/7, and

I—/ dx
A2y e h

We substitute z = x — 2, dz = dz/dx dx = dx, which leads to

XZ) _'_k.

I/dzsinlz—kksin](
- Mﬁzfzz V7 V7

(The integral is a standard integral and can be found in the tables, but is easily checked by
using the chain rule and

4 sin"ly =

d]/ 1—y2'
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Chapter 6

Applications of Integration

6.1 Finding areas
L&T, 18.1-18

We have already discussed how an integral corresponds to an area.
Example 6.1:

Evaluate the area A under y = x? from x = 1 to x = 3.

A = [} x2dx which is 27/3 — 1/3 = 26/3, see Fig‘

6.1.1 Area between two curves
Example 6.2:

Find the area A of the region bounded by y = ¢* and y = 1 — x, for x ranging from 0 to 1, see

Fig.[2}

From the graph we see that e* is above 1 — x, so that

A = (areabelow y = ¢*) — (areabelow y =1 —x)

l d 1 d
- “dx — [ (1—
/Oe x /0( x)dx
1
= /(ex—1+x)dx
0

2\ 1
= <e"—x—|—x>
2 0

= (e—l—i—%)—l
= e—2—|—%
~ 1.2183

Here we have made the optional choice to combine the two integrands before evaluation of
the integral.

69
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CHAPTER 6. APPLICATIONS OF INTEGRATION
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Figure 6.1: The surface below x? between 1 and 3.

Figure 6.2: The area between 1 — x and e* for x between 0 and 1.
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fx)

a dox b

Figure 6.3: Integration as the sum of area of small strips.

fix)

Figure 6.4: A surface of revolution.

6.1.2 Basic Derivation of Area Formula

L&T, 18.1-18

To find area beneath the curve y = f(x) between x = a and x = b, we divide the area into strips as
shown in Fig. Let the thickness of strip at x be dx. The height at x is f(x), and therefore the area of the
strip is 6A = f(x)dx. Now sum up all strips from a to b. The areas is

A=) f(x)éx.
In the limit that éx becomes infinitesimal (i.e., approaches zero), we replace éx by dx, the vt by [ ﬂb and so

A= /hf(x) dx. 6.1)

6.2 Volumes of Revolution

L&T, 19.1-11

If we take area under the curve y = f(x) between x = a and x = b, as above, and then
rotate it around the x axis through 360° we sweep out a volume called a volume of
revolution V.

This situation is shown in Fig. Clearly V has an axis of symmetry, i.e., the x axis. Many volumes that
occur in practice have such an axis. We can use integration to find the volume.
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A

Figure 6.5: The volume of a small disc.

Figure 6.6: The surface of revolution fory = (1/x),1 < x < 2.

Again divide the area into strips of width dx. Since the height is f(x), when we rotate the strip we get
a disc of radius r = f(x), see Fig. The area of this disc is 717> = 71 (x)?, and the volume of the disc is
8V = mr?5x. The total volume is again a sum,

b b
V=Y nrtox=mY_ f(x)%x.
a a

Now take limit where dx becomes infinitesimal, and thus

V= ﬂ/bf(x)zdx.

This is the formula for the volume of a solid of revolution.
Example 6.3:

Find the volume formed when the curve y = 1/x, between x = 1 and x = 2 is rotated around
the x axis, see Fig.

Solution:



6.3. CENTROIDS (FIRST MOMENT OF AREA)

Figure 6.7:

vV = n/lz(l/x)zdx

= 7(-1/x)]
= m(—(1/2) - (-1))
= /2

Example 6.4:

73

Find the volume formed when equilateral triangle with corners at O = (0,0), A = (1,/3),

B = (2,0) is rotated around the x axis, see Fig.
Solution:
Along OA the curve is y = v/3x, along AB the curve is y = 2v/3 — v/3x. Thus
1 2
vV = 71/ (\/gx)zdx—i—n/ (2v3 — V/3x)% dx
0 1
1 2
_ 3 (2 —x)3
= 37 <x /3)O 137 ( (2 —x) /3)1
= m+m(0+1)
= 2m.

6.3 Centroids (First moment of area)

L&T, 19.12-22
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6.3.1 First moment of the area about the y axis

Again consider curve y = f(x) from a to b, divided into strips of thickness dx. The area of the strip is
given by (6A ~ f((x))dx). The total area is given by the sum,

b

b b
AmY 6A=Y) f(x)ox —>/u f(x)dx.

a

If the strip is very thin then all of it is approximately at a distance x from y axis. If we now add up NOT
JA but instead /A times x, i.e., JA “weighted” by x, we get the first moment of the area about the x axis,

b b b
My~ )Y x6A =) xf(x)éx — / xf((x))dx

This is usually called My, even though it is the first moment around the y axis.
Example 6.5:

Find the first moment of area under y = 1 + x + x* from x = 0 to x = 2 about the y axis.

2
M, = /X(1+x2+x3)dx
0

= /02(x+x2+x3)dx
= (Pr2+2/34x44),
= 24+8/3+4

26/3

Example 6.6:

Find the first moment of the area under y = e~ from x = 0 to x = 1 about the y axis.

1
M, :/ xe *dx.
0

Integrate by parts: u = x, du/dx = 1, du = dx, dv = e *dx. Therefore dv/dx = ¢*, and thus

— X
v=—e%,

1
M, = (xe’x)é—/(—e*x)dx
0
1
= —1—0+/ e tdx
€ 0
1
— ie_ 1

= E+( "o
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a ox b

Figure 6.8: Subdividing the strips of width Jx in ones of height dy.

6.3.2 First Moment of the area about the x axis

Now consider the same strip of thickness dx. On this strip y goes from 0 to f(x). Divide strip into
segments of length Jy as shown in Fig. The area of such a segment is dydx. The total area of strip is

0A =~ Z]J;(:xo) oyéx. In the limit that 5y becomes infinitesimal we get

oA [I%) dyox
= w§Wex
f(x)sx,

as before. Now instead of summing segments we can weight each of them by the value of y to get

f)
M, = ) ydyéx
y=0
f(x)
= dy)s
( /0 ydy)ox
2
— (]/ )f(x)5x

/0

= S

To find My we have to add the contributions of all strips
b
My = ) oM,
a
b
L. \2
= ; 5 (x)70x

- ;/ubf(x)zdx

This is the formula for the first moment of the area about the x axis (This integral is same as that for the
volume of revolution except for the factor % outside the integral rather than 7).
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Example 6.7:
Find M, for area under curve y = 1+ x + x? from x = 0 to x = 2 (same area as in example
xxxx(1))
flx) = 1+x+22
f0? = (+x+a?)
= 1+42x+3x% +2x° + 2
Therefore
1 12
M, = E/ (14 2x + 322 4223 + x*) dx
0
- ! x+x2+x3+x—4+x—5 2
2 2 5/,
1 32
= S(2+4+8+8+7)
16
= 114 —
* 5
_n
5
= 142

6.3.3 Centroid of a plane area

For any plane shape with area A, the centroid is a point with coordinates (x¢, yc) given by
xc =1/AMy, yc = 1/ AM,, where M, is first moment of area about the y axis, and M, is
first moment of area about the x axis.

Example 6.8:

Find the centroid of the area under y = 1 + x + x? from x = 0 to x = 2 using the previous two
examples.

We know that M, = 26/3 and M, = 71/5, and we just need to determine A,

2
A = /(1+x+x2)dx
0

= (x+x2/2+x3/3)%
= 2+2+8/3
20/3

Therefore

v = My 326 26 .,
C 7 A 23 20 7

My 371 213
Yo = A a5 100 2P
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6.3.4 Meaning of the centroid

If we have thin plate with constant thickness then the centroid is the position of centre of mass (C of
M). The C of M is the point at which all mass can be regarded as acting. Let mass per unit area be
p: This will be constant if the thickness is constant (and material is of uniform composition). The total
mass m = Ap where A is area. Turning effect about y axis of mass m at (x,y) would be mx = Apx.
A strip of thickness dx, height f(x) has area f(x)dx. Mass would be pf(x)éx. Total turning effect is

Yo xpf(x)ox — f xf(x)dx = pMy, therefore Apx = pMy, therefore xc = 1/ AM,.

6.4 Second Moment of Area
The first moment of area (about the y axis) was
b b b
My~ Y x6A =) xf(x)dx — / xf(x)dx
a a a
Similarly second moment is same but with x? instead of x,

x2

X f(x)dx — /ab x?

b

ox = Z

a

b

0A = Z

a
Example 6.9:

Find the second moment of area under y = 1 + x + x? about the y axis from x = 0 to x = 2.

2
ox = /x (14 2% + x%) dx
0

15

Note: To find second moment about x axis is more complicated:

oy= [ ApePax

This will not be done here.
Note: Recall that first moments are used in calculating centroids which are related to centres of mass.
Second moments are used in calculating moments of inertia of flat planes.
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Chapter 7

Differential Equations

7.1 introduction

‘ A differential equation (DE) is any equation with a differential in it.

Examples:
(@ #£=1,
(b) & =2,
© &=y

(d) x% + 2y = cos x,
Ay | Hdy _

Differential equations occur in many models of real-world situations. One particular examples when we
consider rates of change, e.g.,

(f) the concentration in C a chemical reaction % =a—kC,

explosive) population growth 4Y = aN,
g P pop g dt

(h) simple harmonic motion ’fi% = —w?x,
2
(i) motion under the influence of the earth gravitional field, m% = —mg.

We would really like to classify such equations by their order.

’ The order of a DE is the highest derivative contained in it.

Thus (a), (b), (c), (d), (f), (g) are first order, and (c), (h), (i) are second order. In this course we only
consider first order DEs.
Solving DEs is sometimes called integrating them, since for the simplest types this is exactly what we
do. Just as for integration we draw up a list of standard types that we know how to do.
Most solutions of DEs contain constants. These are just like constants of integration, and arise from
the fact that the derivatives of these constants is 0. We always get as many arbitrary constants as the order
of the equation. The general solution will include these arbitrary constants. If we have extra information

79
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apart from the DE itself we can find the arbitrary constants. This extra information is sometimes called
“initial conditions” or “boundary conditions”. Once the arbitrary constants are known we have the actual
solution.

We shall study several types of DEs to facilitate solution, but let’s first look at two simple examples.
Example 7.1:

Solve the DE p
Yy_ 2
T 22
a7
given that y = 1 for x = 0.

Integrate both sides of the equation,

_[dy. [ 2 _ 1
y—/ﬁdx—/(x Z)dx—gx 2x + k.

Atx =0,y = 1, which implies k = 1. Thus

Example 7.2:

Find the general solution of cos x dy /dx 4+ 2sinx = 0.

Rearrange as

dy sin x

-z = 2

dx oS X
= —2tanx

Integrate

‘y = —2In(secx) + k. ‘

7.2 Some special types of DE

721 Separable type

Equations of the form
dy/dx = f(x)g(y)
are called separable. They are dealt with in the following way: Divide both sides by g(y), and integrate

both sides with respect to x,
1 dy
—— 2 dx = / x)dx,
/ 8(y) dx f)

/g(ly)dy = /f(x)dx

Now do both integrals.
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Example 7.3:

Solve the DE p
Y 52
Ix 2xy

, given thaty = 1/2 when x = 0.

Divide by y?, and obtain
lzd—y = 2x.
y? dx

Now integrate both sides with respect to x

/%d—ydx = /Zxdx ,
y? dx
2

—dy = x“+k ,

yZ
1
- - x2+k 7
¥
-
YT T rk

This is the general solution, but we know that at x = 0, y = 1/2. Substituting this we find that
1/2 = —1/k, therefore k = —2 and

1 1

YT T i

Example 7.4:

Find the general solution of

d
2y(x+1)£ =44y

Rearrange as
dy  4+y°

dx ~ 2y(x+1)°
Sohere f(x) =1/(x+1),8(y) = %- Divide by g(y),

2y dl_ 1
4+y2dx  x+1

Integrate both sides with respect to x

2ydydx:/ldx,

J 4+y2dx x+1
2y
4+y2dy = In(x+1)+k ,

In(4 + ) In(x+1)+k



82 CHAPTER 7. DIFFERENTIAL EQUATIONS

We write k = In A, with A also arbitrary, but positive. We find
In(4+y?) =In(x+1) +InA = In(A(x + 1)),
Thus 4 + y? = A(x + 1), or isolating v,

y=+/A(x+1) -4

Example 7.5:
N(t) satisfies the DE
dN
ZY —aN.
a — "

Giventhat N =10att =0find N att = 3.

Here f(t) = a, i.e., a constant, and ¢(N) = N, so
1/NdN/dt = a ,
ld—N dt = /ocdt ,

N dt
/%dN — at+k
InN = at+k ,
N = ekeat
N = A

Since atf = 0, N = 10, we have A = 10, and

Att =3, N = 10e%.

7.2.2 linear type

These have form,

Iy TPy =q(x) (7.1)
Method as follows

Step 1 Find indefinite integral of p(x) and call this s(x) (no constant of integration needed),

and thus ds/dx = p.
Step 2 Multiply both sides of by ™),

dy
s S —
e Ir +epy =eq
Since p = ds/dx we have
esd—y + esﬁy =eq . (7.2)

dx dx
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Step 3 Note that
d o _ d ds _ ods
dx(e )= ds(e )dx ~ ¢ x
Note also that p J p J i
e S\ __ l S (o8 — (o8 l S i
dx(ye)_dxe +]/dx(e) (e)dx+y(e )dx
This is exactly the Lh.s. of (7.2). Rewrite eq. as
i(yes) = ge* (7.3)
P . .

Step 4 Integrate both sides with respect to x,

yeszfqesdx+k

y=e* {/qesdx—ﬁ—k}

N.B. Remember the method not the final formula!
Example 7.6:

Hence

Find the general solution of

dy _
i (tanx)y =3cosx . (7.4)

Here p = tanx so s = [tanxdx = In(secx) (no constant of integration needed here), ¢* =
eln(secx) — sec x. Multiply both sides of by ¢® = secx:

secx Z—Z + sec(x) tan(x)y = 3 cos(x) sec(x)

The Lh.s. is the differential of e°y so we find

dsec(x)y 3
dx

Integrate this and find

(secx)y =3x+k
Thus, finally,

‘y: (3x + k) cosx ‘
Example 7.7:
Solve the DE
xd—y +2y = 4x (7.5)
ax YT '

given that y = 0 when x = 1.
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Rearrange (7.5) ,
dy 2 _

which is of linear form with p = % We find

s = /pdx:/%dx:ﬂnx:ln(xz) ,

and ¢f = ¢In(*) = »2, Multiply by ¢f = x2, and find

d
24y 2
x dx+2xyf4x

the Lh.s. is differential of ey = x?y. Integrate this and find

xzy = 4x3/3+k ,or
y = 4x/3+k/x?

This is the general solution. We know that when x = 1 theny = 0 so

0=4/3+k/1
. Therefore k = —4/3 and
IS
¥=3 X2

7.2.3 Homogeneous Type

We first need to define a function of two variables:

’ If f(x,y) is a function of 2 variables, it delivers a number on specification of x and y.

Examples:

X +y, ycos(mx), -

x24y?
If x =1 and y = 2 in the above we get 3, -2, % In2.
Now we can define a homogeneous function:

A homogeneous function of 2 variables is one where we have a sum of terms all of which
have the same total power (called degree).

Examples

function degree
+axy+yt 2

x+ 2y 1

2 2
TtE 2 1
x4 x2

1+5+% 0

xy 2

x> +y not homogeneous
x+y+1 not homogeneous

There is a simple test to see if f(x,y) is homogeneous. Replace x by Ax and y by Ay to get f(Ax, Ay). If
f(Ax,Ay) = A" f(x,y) then f is homogeneous with degree n.
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Example 7.8:
(@ f(x,y) =x+2y:

f(Ax,Ay) = Ax +2 Ay = A(x +2y) ,
and f is homogeneous with degree 1.

(b) flx,y) =14%+ 5

Ax  A2x2

1f(x,y)
Nf(xy)

which is therefore homogeneous of degree 0.

(@ flxy) =cos (§).

f(Ax, Ay) = cos (ﬁ;) = cos (;)

which is therefore homogeneous of degree 0.

flxy
g(xy)
same degree.

=

A homogeneous DE is one of type Z—Z , with g and f both homogeneous and of the

Homogeneous DEs can be made separable by the substitution ¥ = xv. We shall demonstrate this by
means of examples:

Example 7.9:
Find general solution of
dy _ x+2
dx  2x -y
Puty = xv(x), then % =04 x%/ 0
U—I—x@ _ x+2x0  1+20
dx B 2xX — XU - 2o
therefore
v _ 1+20_07 1402
dx =~ 2—v =55

dv _ 1(1407
dx ~ x\2—-v
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which is separable. This can be solved in the standard way,
( 2-0 ) do_ 1
1402/ dx x
2—0v\dv 1
J G = [

/z;vdv = Inx+k ,

(1+92?)
2 1 20
— d —7/701 = 1 k ,
/(1+02) v 2] Tr o) v nx -+
2tanflv—%ln(l+vz) = Inx+k
And we conclude that

AN Yy _

2 tan (x) 21n(1+x)—lnx+k

(We can also replace k with In A.)

Often we need to rearrange the equation first to get a homogeneous form, as in the following example.

Example 7.10:

Solve
giveny = 1 when x = 1.

Rearrange as

This is therefore a homogeneous DE. We substitute y = xv,

dv  3x>+x*0? 340> 3

v+x% x2v v :E—H)
We can now turn the crank,

dx v '’

vd—vdx = /gdx ,

dx X

2
% = 3lnx+k ,

1/2y*/x* = 3Inx+k ,
v = 2x*(BInx+k) ,

which is the general solution. Imposing the condition that for x = 1, ¥ = 1, we obtain 1 =
2(0 + k), and therefore k = 1/2. The solution is thus

‘yz =2x?(2Inx +1/2).
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7.3 Bernoulli’s Equation

Bernoulli’s equation take the form

dy — o)
Iy TPy =aq(x)y”.

In order to solve it, we convert it to linear type. Multiply both sides by y~"(1 — n),

(1= my " 4 p()(1 - m)y " = g(x) (1 ).

Now substitute z = '

", using
dz _dzdy _ (1 —n)y‘”dy

dx " dydx dx

This leads to the equation

O - mp)z = (1-ng(x).

87

If we then define p(x) = (1 — n)p(x) and §(x) = (1 — n)g(x), we have an equation of linear type, which

can be dealt with through an itegrating factor.
Example 7.11:
dy

1
lve -2 4 —y = xy°.
Sovedx—i-xy xy
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