P201 Workshop 6, Week 6

Please follow the instructions of your supervisor regarding timing of these problems.

Physics

1. Consider the ideal gas equation

$$pV = nRT$$
,

where n is the density of a gas of atoms in a volume V at temperature T, and R is a constant. Sketch the surface

$$p = p(V, T)$$

for constant density n. Skecth the following on the surface p(V, T):

- (i) curves of constant pressure p (isobars), (ii) curves of constant temperature T (isotherms), and
- (iii) curves of constant volume *V* (isovolumes).

Math Practise

2. Solve the differential equations, and in each case show that the solution is real:

(i)
$$y''(x) + y(x) = 0$$
, $y'(0) = 1$, $y(0) = 0$

(ii)
$$y''(x) + y'(x) + y(x) = 0$$
, $y'(0) = 1$, $y(0) = 0$

(iii)
$$y''(x) + 2y'(x) + y(x) = 0$$
, $y'(0) = 1$, $y(0) = 0$

(iv)
$$y''(x) + 3y'(x) + y(x) = 0$$
, $y'(0) = 1$, $y(0) = 0$

- 3. We study the differential equation $y''(x) + 5y'(x) + 4y(x) = e^{2x}$
 - (i) Solve the related homogeneous problem
 - (ii) Find a particular solution of the inhomogeous equation by susbtituting $y(x) = Ce^{zx}$, and determining the values for C and z.
 - (iii) Find the solution of the inhomegeneous equation satisfying y(0) = 0, y'(0) = 0.

Math Problems

4. Sketch the following surfaces:

(i)
$$f(x, y) = x$$
;

(ii)
$$f(x, y) = y$$
;

(iii)
$$f(x, y) = xy$$
.

5. Calculate the following partial derivatives

(i)
$$\frac{\partial}{\partial x}e^{-(x^2+y^2)}$$

(ii)
$$\frac{\partial}{\partial y} \sin(x + x^2 y^3)$$

(iii)
$$\frac{\partial^2}{\partial x \partial y} (x^2 + xy^3)$$

(iv)
$$\frac{\partial^2}{\partial y \partial x}(x^2 + xy^3)$$

6. * Discuss and sketch the following:

(i)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
 ellipsoid,

(ii)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1 \quad \text{hyperboloid type 1,}$$

(iii)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1 \quad \text{hyperboloid type 2,}$$

(v)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = z \quad \text{elliptical paraboloid},$$

(vi)
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = z$$
 hyperbolic paraboloid.