5.2 Two–by–Two Matrices: Linear Mappings

The determinant \mathop{det}(A) of a two–by–two matrix A is defined as \mathop{det}\left (\array{ a&b\cr c &d } \right ) ≡\left |\array{ a&b\cr c &d } \right | := ad−cb.

5.2.1 Specific Linear Mappings 1: the Unit Matrix

This is the trivial mapping represented by the unit or identity matrix, I,

\begin{eqnarray} I = \left (\array{ 1&0\cr 0 &1 } \right ).& & %&(5.10)\\ \end{eqnarray}

We have \mathop{det}(I) = 1. Check that Ix = x for any vector x.

5.2.2 Specific Linear Mappings 2: Stretching and Shrinking

These are linear mappings A represented by the multiples of the unit matrix, where c is a real number such that

\begin{eqnarray} A = \left (\array{ c&0\cr 0 &c } \right ).& & %&(5.11)\\ \end{eqnarray}

We have \mathop{det}(A) = {c}^{2} > 1. Check that in this case Ax = cx for any vector x.

5.2.3 Specific Linear Mappings 3: Projections

These are linear mappings A such as

\begin{eqnarray} A = \left (\array{ 1&0\cr 0 &0 } \right ).& & %&(5.12)\\ \end{eqnarray}

We have \mathop{det}(A) = 0. Check that in this case, for any vector x = (x,y), Ax = (x,0): the vector is projected onto the x-axis.

5.2.4 Specific Linear Mappings 4: Rotations

These are mappings R(θ) that rotate vectors around the origin by an angle θ,

\begin{eqnarray} R(θ) = \left (\array{ \mathop{cos}\nolimits θ& −\mathop{ sin}\nolimits θ\cr \mathop{ sin} \nolimits θ & \mathop{ cos} \nolimits θ } \right ).& & %&(5.13)\\ \end{eqnarray}

In this case, \mathop{det}(R(θ)) ={\mathop{ cos}\nolimits }^{2}θ − (−{\mathop{sin}\nolimits }^{2}θ) = 1. A vector x = (x,y) is rotated into

\begin{eqnarray} R(θ)x = \left (\array{ \mathop{cos}\nolimits θ& −\mathop{ sin}\nolimits θ\cr \mathop{ sin} \nolimits θ & \mathop{ cos} \nolimits θ } \right )\left (\array{ x\cr y } \right ) = \left (\array{ x\mathop{cos}\nolimits θ − y\mathop{sin}\nolimits θ\cr x\mathop{ sin} \nolimits θ + y\mathop{ cos} \nolimits θ } \right ).& & %&(5.14)\\ \end{eqnarray}

Examples for rotations are

\begin{eqnarray} \left (\array{ \mathop{cos}\nolimits θ& −\mathop{ sin}\nolimits θ\cr \mathop{ sin} \nolimits θ & \mathop{ cos} \nolimits θ } \right )\left (\array{ 1\cr 0 } \right ) = \left (\array{ \mathop{cos}\nolimits θ\cr \mathop{ sin} \nolimits θ } \right ),\quad \left (\array{ \mathop{cos}\nolimits θ& −\mathop{ sin}\nolimits θ\cr \mathop{ sin} \nolimits θ & \mathop{ cos} \nolimits θ } \right )\left (\array{ 0\cr 1 } \right ) = \left (\array{ −\mathop{ sin}\nolimits θ\cr \mathop{ cos} \nolimits θ } \right ).& & %&(5.15)\\ \end{eqnarray}

Special Rotations: θ = 0

In this case,

\begin{eqnarray} R(θ = 0) = \left (\array{ 1&0\cr 0 &1 } \right ) = I\quad \text{(unit matrix).}& & %&(5.16)\\ \end{eqnarray}

Special Rotations: θ = {π\over 2}

In this case,

\begin{eqnarray} R\left (θ = {π\over 2} \right ) = \left (\array{ 0& − 1\cr 1 & 0 } \right ) = −i{σ}_{y}\quad \text{($ − i$ times Pauli Matrix ${σ}_{y}$).}& & %&(5.17)\\ \end{eqnarray}

5.2.5 Specific Linear Mappings 5: Reflections

These are mappings S(θ) that reflect a vectors at a fixed axis:

\begin{eqnarray} S(θ) = \left (\array{ \mathop{cos}\nolimits θ& \mathop{sin}\nolimits θ\cr \mathop{ sin} \nolimits θ & −\mathop{ cos} \nolimits θ } \right ).& & %&(5.18)\\ \end{eqnarray}

In this case, \mathop{det}(S(θ)) = −{\mathop{cos}\nolimits }^{2}θ −{\mathop{ sin}\nolimits }^{2}θ = −1. A vector x = (x,y) is transformed into

\begin{eqnarray} S(θ)x = \left (\array{ \mathop{cos}\nolimits θ& \mathop{sin}\nolimits θ\cr \mathop{ sin} \nolimits θ & −\mathop{ cos} \nolimits θ } \right )\left (\array{ x\cr y } \right ) = \left (\array{ x\mathop{cos}\nolimits θ + y\mathop{sin}\nolimits θ\cr x\mathop{ sin} \nolimits θ − y\mathop{ cos} \nolimits θ } \right ).& & %&(5.19)\\ \end{eqnarray}

Examples:

\begin{eqnarray} \left (\array{ \mathop{cos}\nolimits θ& \mathop{sin}\nolimits θ\cr \mathop{ sin} \nolimits θ & −\mathop{ cos} \nolimits θ } \right )\left (\array{ \mathop{cos}\nolimits {1\over 2}θ \cr \mathop{sin}\nolimits {1\over 2}θ } \right ) = \left (\array{ \mathop{cos}\nolimits {1\over 2}θ\mathop{cos}\nolimits θ +\mathop{ sin}\nolimits {1\over 2}θ\mathop{sin}\nolimits θ \cr \mathop{cos}\nolimits {1\over 2}θ\mathop{sin}\nolimits θ −\mathop{ sin}\nolimits {1\over 2}θ\mathop{cos}\nolimits θ } \right ) = \left (\array{ \mathop{cos}\nolimits {1\over 2}θ \cr \mathop{sin}\nolimits {1\over 2}θ } \right ),& & %&(5.20)\\ \end{eqnarray}

where we have a formula for trigonometric functions (CHECK). Furthermore, we have

\begin{eqnarray} \left (\array{ \mathop{cos}\nolimits θ& \mathop{sin}\nolimits θ\cr \mathop{ sin} \nolimits θ & −\mathop{ cos} \nolimits θ } \right )\left (\array{ 1\cr 0 } \right ) = \left (\array{ \mathop{cos}\nolimits θ\cr \mathop{ sin} \nolimits θ } \right ),\quad \left (\array{ \mathop{cos}\nolimits θ& \mathop{sin}\nolimits θ\cr \mathop{ sin} \nolimits θ & −\mathop{ cos} \nolimits θ } \right )\left (\array{ 0\cr 1 } \right ) = \left (\array{ \mathop{sin}\nolimits θ\cr −\mathop{ cos} \nolimits θ } \right ).& & %&(5.21)\\ \end{eqnarray}

Sketch this in the x-y-plane (lecture). We recognise that S(θ) defines a reflection at the axis defined by the direction of the vector (\mathop{cos}\nolimits {1\over 2}θ,\mathop{sin}\nolimits {1\over 2}θ)

Special Reflection: θ = 0

In this case,

\begin{eqnarray} S(θ = 0) = \left (\array{ 1& 0\cr 0 & −1 } \right ) = {σ}_{z}\quad \text{(Pauli Matrix ${σ}_{z}$).}& & %&(5.22)\\ \end{eqnarray}

Special Reflection: θ = {π\over 2}

In this case,

\begin{eqnarray} S\left (θ = {π\over 2} \right ) = \left (\array{ 0&1\cr 1 &0 } \right ) = {σ}_{x}\quad \text{(Pauli Matrix ${σ}_{x}$).}& & %&(5.23)\\ \end{eqnarray}