2.3 2nd order homogeneous linear differential equations with constant coefficients II

Now we attack the case of arbitrary p and q in our differential equation

\begin{eqnarray} y''(x) + py'(x) + qy(x) = 0.& & %&(2.24) \\ \end{eqnarray}

Remember that for p > 0 and q > 0 this corresponds to the differential equation Eq. (2.1) of the damped linear harmonic oscillator. We already know that this system performs oscillations ( ⇝\mathop{ sin}\nolimits ,\mathop{cos}\nolimits ) that can be exponentially damped ( ⇝\mathop{ exp}\nolimits ). Therefore, we expect something related to \mathop{sin}\nolimits ,\mathop{cos}\nolimits ,\mathop{exp}\nolimits functions. But these are all related to each other if we recall what we have learned about complex numbers:

\begin{eqnarray} \mathop{exp}\nolimits (ix)& =& \mathop{cos}\nolimits (x) + i\mathop{sin}\nolimits (x),x\text{ real}%& \\ \mathop{cos}\nolimits (x)& =& {{e}^{ix} + {e}^{−ix}\over 2} =\mathop{ Re}\nolimits [{e}^{ix}] %& \\ \mathop{sin}\nolimits (x)& =& {{e}^{ix} − {e}^{−ix}\over 2i} =\mathop{ Im}\nolimits [{e}^{ix}]. %&(2.25) \\ \end{eqnarray}

Furthermore, for arbitrary complex z = x + iy,

\begin{eqnarray}{ e}^{z} = {e}^{x+iy} = {e}^{x}{e}^{iy} = {e}^{x}[\mathop{cos}\nolimits (y) + i\mathop{sin}\nolimits (y)] = {e}^{x}\mathop{ cos}\nolimits (y) + i{e}^{x}\mathop{ sin}\nolimits (y).& & %&(2.26) \\ \end{eqnarray}

The function {e}^{z} with complex z comprises the real exponential as well as \mathop{sin}\nolimits and \mathop{cos}\nolimits .

Let us therefore try an exponential Ansatz in Eq. (2.24),

\begin{eqnarray} y(x) = {e}^{zx} ⇝ y''(x) + py'(x) + qy(x) = [{z}^{2} + pz + q]{e}^{zx} = 0.& & %&(2.27) \\ \end{eqnarray}

We recognize that y(x) = {e}^{zx} fulfills the differential equation, if the bracket [...] is zero:

\begin{eqnarray} [{z}^{2} + pz + q] = 0.& & %&(2.28) \\ \end{eqnarray}

This is a quadratic equation which in general has two solutions,

\begin{eqnarray}{ z}^{2} + pz + q = 0 ⇝ {z}_{ 1∕2} = −{p\over 2} ±\sqrt{{{p}^{2 } \over 4} − q}.& & %&(2.29) \\ \end{eqnarray}

Various cases arrise for different signs of the argument of the square root (the discriminant). Let us look at each of these cases in turn.

2.3.1 Positive discriminant

In the case {{p}^{2}\over 4} − q > 0,

\begin{eqnarray}{ z}_{1∕2} = −{p\over 2} ±\sqrt{{{p}^{2 } \over 4} − q}& & %&(2.30) \\ \end{eqnarray}

are both real and the two solutions fulfilling Eq. (2.24) are

\begin{eqnarray} {{p}^{2}\over 4} − q > 0 ⇝ {y}_{1}(x) = {y}_{1}{e}^{[−{p\over 2} +\sqrt{{{p}^{2 } \over 4} −q}]x},\quad {y}_{2}(x) = {y}_{2}{e}^{[−{p\over 2} −\sqrt{{{p}^{2 } \over 4} −q}]x}& & %&(2.31) \\ \end{eqnarray}

The general solution is the linear combination of the two,

\begin{eqnarray} {{p}^{2}\over 4} − q > 0 ⇝ y(x) = {y}_{1}{e}^{[−{p\over 2} +\sqrt{{{p}^{2 } \over 4} −q}]x} + {y}_{2}{e}^{[−{p\over 2} −\sqrt{{{p}^{2 } \over 4} −q}]x}.& & %&(2.32) \\ \end{eqnarray}

In this case there are no oscillations at all. The ‘damping term’ py'(x) is too strong.

2.3.2 negative discriminant

In the case {{p}^{2}\over 4} − q < 0, the two zeros become complex:

\begin{eqnarray}{ z}_{1∕2} = −{p\over 2} ±\sqrt{{{p}^{2 } \over 4} − q} = −{p\over 2} ± i\sqrt{q − {{p}^{2 } \over 4}} =: −{p\over 2} ± iΩ,& & %&(2.33) \\ \end{eqnarray}

where we define an angular frequency Ω = \sqrt{q − {p}^{2 } ∕4}. Now, the two solutions fulfilling Eq. (2.24) are

\begin{eqnarray} {{p}^{2}\over 4} − q < 0 ⇝ {y}_{1}(x) = {y}_{1}{e}^{[−{p\over 2} +iΩ]x},\quad {y}_{2}(x) = {y}_{2}{e}^{[−{p\over 2} −iΩ]x},\quad Ω := \sqrt{q − {{p}^{2 } \over 4}} .& & %&(2.34) \\ \end{eqnarray}

The general solution is the linear combination of the two,

\begin{eqnarray} {{p}^{2}\over 4} − q < 0 ⇝ y(x) = {y}_{1}{e}^{[−{p\over 2} +iΩ]x} + {y}_{2}{e}^{[−{p\over 2} −iΩ]x},\quad Ω := \sqrt{q − {{p}^{2 } \over 4} − q}.& & %&(2.35) \\ \end{eqnarray}

We rewrite this as

\begin{eqnarray} y(x)& =& {y}_{1}{e}^{[−{p\over 2} +iΩ]x} + {y}_{2}{e}^{[−{p\over 2} −iΩ]x} = {e}^{−px∕2}\left \{{y}_{1}{e}^{iΩx} + {y}_{2}{e}^{−iΩx}\right \} %& \\ & =& {e}^{−px∕2}\left \{{y}_{ 1}[\mathop{cos}\nolimits (Ωx) + i\mathop{sin}\nolimits (Ωx)] + {y}_{2}[\mathop{cos}\nolimits (Ωx) − i\mathop{sin}\nolimits (Ωx)]\right \}%& \\ & =& {e}^{−px∕2}\left \{[{y}_{ 1} + {y}_{2}]\mathop{cos}\nolimits (Ωx) + i[{y}_{1} − {y}_{2}]\mathop{sin}\nolimits (Ωx)\right \}. %&(2.36) \\ \end{eqnarray}

Now, this seems a bit odd since we have got a complex solution due to the term i({y}_{1} − {y}_{2}). However, the constant coefficients {y}_{1} and {y}_{2} can be complex anyway (and still y(x) is a solution of the differential equation). If we are only interested in real functions y(x), we can re–define new constants {c}_{1} := {y}_{1} + {y}_{2} and {c}_{2} := i[{y}_{1} − {y}_{2}] such that the general solution becomes

\begin{eqnarray} y''(x) + py'(x) + qy(x)& =& 0,\quad {{p}^{2}\over 4} − q < 0 ⇝ %& \\ y(x)& =& {e}^{−px}\left \{{c}_{ 1}\mathop{ cos}\nolimits (Ωx) + {c}_{2}\mathop{ sin}\nolimits (Ωx)\right \}.%&(2.37) \\ \end{eqnarray}

Still {c}_{1} and {c}_{2} could be complex numbers, but we can choose them real if we only want real functions y(x).

2.3.3 The Marginal Case

For the marginal case {{p}^{2}\over 4} − q = 0 we have only one solution, z = −p∕2, and thus only one integration constant. This is clearly insufficient! Help can be found in the expression for the simplest marginal case,

y''(x) = 0

which has as solution

y(x) = a + bx.

We therefore substitute y(x) = (a + bx)\mathop{exp}\nolimits (−px∕2) and find

\begin{eqnarray} y(x)& =& (a + bx)\mathop{exp}\nolimits (−px∕2), %& \\ y'(x)& =& b\mathop{exp}\nolimits (−px∕2) −{p\over 2}(a + bx)exp(−px∕2), %& \\ y''(x)& =& −bp\mathop{exp}\nolimits (−px∕2) + {{p}^{2}\over 4} (a + bx)exp(−px∕2).%&(2.38) \\ \end{eqnarray}

Using the differential equation y''(x) + py'(x) + qy(x) = 0, we find that

\begin{eqnarray} y''(x) + py'(x) + qy(x) = \left ({{p}^{2}\over 4} −{{p}^{2}\over 2} + q\right )(a + bx)exp(−px∕2) − bp\mathop{exp}\nolimits (−px∕2) + bp\mathop{exp}\nolimits (−px∕2) = 0.& & %&(2.39) \\ \end{eqnarray}

Here we have used q = 4{p}^{2}. Thus

\class{boxed}{ y(x) = (a + bx)\mathop{exp}\nolimits (−px∕2). }

2.3.4 Summary

Solutions of y''(x) + py'(x) + qy(x) = 0:

{p}^{2} > 4qy(x) =\mathop{ exp}\nolimits (−{p\over 2}x)\left [{y}_{1}\mathop{ exp}\nolimits \left (\sqrt{{{p}^{2 } \over 4} − q}x\right ) + {y}_{2}\mathop{ exp}\nolimits \left (−\sqrt{{{p}^{2 } \over 4} − q}x\right )\right ]
  
{p}^{2} < 4q y(x) =\mathop{ exp}\nolimits (−{p\over 2}x)\left [{c}_{1}\mathop{ cos}\nolimits \left (\sqrt{q − {{p}^{2 } \over 4}} x\right ) + {c}_{2}\mathop{ sin}\nolimits \left (\sqrt{q − {{p}^{2 } \over 4}} x\right )\right ]
  
{p}^{2} = 4q y(x) =\mathop{ exp}\nolimits (−px∕2)(a + bx)