Workshop 3, Week 3

Please follow the instructions of your supervisor regarding timing of these problems.

1. Write and classify the boundary and initial conditions governing the position u(x,t) of a vibrating string of length L given that

			Initial	Initial
	x = 0	x = L	displacement	velocity
(i)	Fixed	Fixed	0	g(x)
(ii)	Free	Free	$\cos(x)$	0
(iii)	position = -slope	Fixed	f(x)	g(x)

- 2. A firework is set of in the middle of a spherical metal shell, generating a pressure wave, propagating with the speed of sound. If the metal shell remains intact, deduce the boundary condition(s) on the surface of the sphere, and give their classification.
- 3. A particle in a finite square well is described by the Schrödinger equation

$$-\frac{\hbar^2}{2m}\frac{d^2\phi}{dx^2}+V(x)\phi=E\phi$$

The potential takes the form $V(x) = -V_0 |x| < a$, V(x) = 0 |x| > a.

(i) Give the form of the wave function for both |x| < a and |x| > a, give that $-V_0 < E < 0$.

(ii) Treat $x = \pm a$ as a boundary. The physics requires that $\phi(x)$ and $\phi'(x)$ are continuous across the boundary, what conditions can you extract from these BCs?

(iii) Can you find a simple(r) way to write this type of BC?

4. Which of the following functions is periodic? If it is, give its period a) x², b) tan(x), c) cos²(x), d) 10, e) |x|, f) x² - int(x²). "int" gives the smallest integer less than its argument.