5.3 hyperbolic equation

As an example of a hyperbolic equation we study the wave equation. One of the systems it can describe is a transmission line for high frequency signals, 40m long.

\begin{eqnarray} {{∂}^{2}V \over ∂{x}^{2}} & =& {\underbrace{LC} }_{\text{imp}×\text{capac}}{{∂}^{2}V \over ∂{t}^{2}} %& \\ {∂V \over ∂x} (0,t)& =& {∂V \over ∂x} (40,t) = 0, %& \\ V (x,0)& =& f(x), %& \\ {∂V \over ∂t} (x,0)& =& 0, %&(5.18) \\ \end{eqnarray}

Separate variables,

V (x,t) = X(x)T(t).
(5.19)

We find

{X''\over X} = LC{T''\over T} = −λ.
(5.20)

Which in turn shows that

\begin{eqnarray} X''& =& −λX, %& \\ T''& =& − {λ\over LC}T.%&(5.21) \\ \end{eqnarray}

We can also separate most of the initial and boundary conditions; we find

X'(0) = X'(40) = 0,\kern 2.77695pt \kern 2.77695pt T'(0) = 0.
(5.22)

Once again distinguish the three cases λ > 0, λ = 0, and λ < 0:
λ > 0 (almost identical to previous problem) {λ}_{n} = {α}_{n}^{2}, {α}_{n} = {nπ\over 40} , {X}_{n} =\mathop{ cos}\nolimits ({α}_{n}x). We find that

{T}_{n}(t) = {D}_{n}\mathop{ cos}\nolimits \left ( {nπt\over 40\sqrt{LC}}\right ) + {E}_{n}\mathop{ sin}\nolimits \left ( {nπt\over 40\sqrt{LC}}\right ).
(5.23)

T'(0) = 0 implies {E}_{n} = 0, and taking both together we find (for n ≥ 1)

{V }_{n}(x,t) =\mathop{ cos}\nolimits \left ( {nπt\over 40\sqrt{LC}}\right )\mathop{cos}\nolimits \left ({nπx\over 40} \right ).
(5.24)

λ = 0 X(x) = A + Bx. B = 0 due to the boundary conditions. We find that T(t) = Dt + E, and D is 0 due to initial condition. We conclude that

{V }_{0}(x,t) = 1.
(5.25)

λ < 0 No solution.

Taking everything together we find that

V (x,t) = {{a}_{0}\over 2} +{ \mathop{∑ }}_{n=1}^{∞}{a}_{ n}\mathop{ cos}\nolimits \left ( {nπt\over 40\sqrt{LC}}\right )\mathop{cos}\nolimits \left ({nπx\over 40} \right ).
(5.26)

The one remaining initial condition gives

V (x,0) = f(x) = {{a}_{0}\over 2} +{ \mathop{∑ }}_{n=1}^{∞}{a}_{ n}\mathop{ cos}\nolimits \left ({nπx\over 40} \right ).
(5.27)

Use the Fourier cosine series (even continuation of f) to find

\begin{eqnarray} {a}_{0}& =& {1\over 20}{\mathop{\mathop{\mathop{∫ }\nolimits }}\nolimits }_{0}^{40}f(x)dx, %& \\ {a}_{n}& =& {1\over 20}{\mathop{\mathop{\mathop{∫ }\nolimits }}\nolimits }_{0}^{40}f(x)\mathop{cos}\nolimits \left ({nπx\over 40} \right )dx.%&(5.28) \\ \end{eqnarray}