Warning: jsMath
requires JavaScript to process the mathematics on this page.
If your browser supports JavaScript, be sure it is enabled.
10.5 Properties of Bessel functions
Bessel functions have many interesting properties:
\eqalignno{
{J}_{0}(0) & = 1, &\text{(10.31)}
\cr
{J}_{ν}(x) & = 0\quad \text{(if $ν > 0$),} &\text{(10.32)}
\cr
{J}_{−n}(x) & = {(−1)}^{n}{J}_{
n}(x), &\text{(10.33)}
\cr
{d\over
dx}\left [{x}^{−ν}{J}_{
ν}(x)\right ] & = −{x}^{−ν}{J}_{
ν+1}(x), &\text{(10.34)}
\cr
{d\over
dx}\left [{x}^{ν}{J}_{
ν}(x)\right ] & = {x}^{ν}{J}_{
ν−1}(x), &\text{(10.35)}
\cr
{d\over
dx}\left [{J}_{ν}(x)\right ] & = {1\over
2}\left [{J}_{ν−1}(x) − {J}_{ν+1}(x)\right ], &\text{(10.36)}
\cr
x{J}_{ν+1}(x) & = 2ν{J}_{ν}(x) − x{J}_{ν−1}(x), &\text{(10.37)}
\cr
\mathop{\mathop{\mathop{∫
}\nolimits }}\nolimits {x}^{−ν}{J}_{
ν+1}(x)\kern 1.66702pt dx & = −{x}^{−ν}{J}_{
ν}(x) + C, &\text{(10.38)}
\cr
\mathop{\mathop{\mathop{∫
}\nolimits }}\nolimits {x}^{ν}{J}_{
ν−1}(x)\kern 1.66702pt dx & = {x}^{ν}{J}_{
ν}(x) + C. &\text{(10.39)}
}
Let me prove a few of these. First notice from the definition that
{J}_{n}(x) is even or
odd if n is
even or odd,
{J}_{n}(x) ={ \mathop{∑
}}_{k=0}^{∞} {{(−1)}^{k}\over
k!(n + k)!}{\left ({x\over
2}\right )}^{n+2k}.
(10.40)
Substituting x = 0 in the definition
of the Bessel function gives 0
if ν > 0 , since in that case we have
the sum of positive powers of 0 ,
which are all equally zero.
Let’s look at {J}_{−n} :
\begin{eqnarray}{
J}_{−n}(x)& =& {\mathop{∑
}}_{k=0}^{∞} {{(−1)}^{k}\over
k!Γ(−n + k + 1)!}{\left ({x\over
2}\right )}^{n+2k} %&
\\
& =& {\mathop{∑
}}_{k=n}^{∞} {{(−1)}^{k}\over
k!Γ(−n + k + 1)!}{\left ({x\over
2}\right )}^{−n+2k}%&
\\
& =& {\mathop{∑
}}_{l=0}^{∞}{{(−1)}^{l+n}\over
(l + n)!l!}{\left ({x\over
2}\right )}^{n+2l} %&
\\
& =& {(−1)}^{n}{J}_{
n}(x). %&(10.41) \\
\end{eqnarray}
Here we have used the fact that since Γ(−l) = ±∞ ,
1∕Γ(−l) = 0
[this can also be proven by defining a recurrence relation for
1∕Γ(l) ]. Furthermore we changed
summation variables to l = −n + k .
The next one:
\begin{eqnarray}
{d\over
dx}\left [{x}^{−ν}{J}_{
ν}(x)\right ]& =& {2}^{−ν} {d\over
dx}\left \{{\mathop{∑
}}_{k=0}^{∞} {{(−1)}^{k}\over
k!Γ(ν + k + 1)}{\left ({x\over
2}\right )}^{2k}\right \} %&
\\
& =& {2}^{−ν}{ \mathop{∑
}}_{k=1}^{∞} {{(−1)}^{k}\over
(k − 1)!Γ(ν + k + 1)}{\left ({x\over
2}\right )}^{2k−1} %&
\\
& =& −{2}^{−ν}{ \mathop{∑
}}_{l=0}^{∞} {{(−1)}^{l}\over
(l)!Γ(ν + l + 2)}{\left ({x\over
2}\right )}^{2l+1} %&
\\
& =& −{2}^{−ν}{ \mathop{∑
}}_{l=0}^{∞} {{(−1)}^{l}\over
(l)!Γ(ν + 1 + l + 1)}{\left ({x\over
2}\right )}^{2l+1} %&
\\
& =& −{x}^{−ν}{ \mathop{∑
}}_{l=0}^{∞} {{(−1)}^{l}\over
(l)!Γ(ν + 1 + l + 1)}{\left ({x\over
2}\right )}^{2l+ν+1}%&
\\
& =& −{x}^{−ν}{J}_{
ν+1}(x). %&(10.42) \\
\end{eqnarray}
Similarly
\begin{eqnarray}
{d\over
dx}\left [{x}^{ν}{J}_{
ν}(x)\right ]& =& {x}^{ν}{J}_{
ν−1}(x).%&(10.43) \\
\end{eqnarray}
The next relation can be obtained by evaluating the derivatives in the two equations above, and solving for
{J}_{ν}(x) :
\begin{eqnarray}{
x}^{−ν}{J'}_{
ν}(x) − ν{x}^{−ν−1}{J}_{
ν}(x)& =& −{x}^{−ν}{J}_{
ν+1}(x),%&(10.44)
\\
{x}^{ν}{J}_{
ν}(x) + ν{x}^{ν−1}{J}_{
ν}(x)& =& {x}^{ν}{J}_{
ν−1}(x). %&(10.45) \\
\end{eqnarray}
Multiply the first equation by {x}^{ν}
and the second one by {x}^{−ν}
and add:
\begin{eqnarray}
−2ν {1\over
x}{J}_{ν}(x) = −{J}_{ν+1}(x) + {J}_{ν−1}(x).& & %&(10.46) \\
\end{eqnarray}
After rearrangement of terms this leads to the desired expression.
Eliminating {J}_{ν}
between the equations gives (same multiplication, take difference instead)
\begin{eqnarray}
2{J'}_{ν}(x)& =& {J}_{ν+1}(x) + {J}_{ν−1}(x).%&(10.47) \\
\end{eqnarray}
Integrating the differential relations leads to the integral relations.
Bessel function are an inexhaustible subject – there are always more useful properties than one knows. In
mathematical physics one often uses specialist books.