10.5 Properties of Bessel functions

Bessel functions have many interesting properties:

\eqalignno{ {J}_{0}(0) & = 1, &\text{(10.31)} \cr {J}_{ν}(x) & = 0\quad \text{(if $ν > 0$),} &\text{(10.32)} \cr {J}_{−n}(x) & = {(−1)}^{n}{J}_{ n}(x), &\text{(10.33)} \cr {d\over dx}\left [{x}^{−ν}{J}_{ ν}(x)\right ] & = −{x}^{−ν}{J}_{ ν+1}(x), &\text{(10.34)} \cr {d\over dx}\left [{x}^{ν}{J}_{ ν}(x)\right ] & = {x}^{ν}{J}_{ ν−1}(x), &\text{(10.35)} \cr {d\over dx}\left [{J}_{ν}(x)\right ] & = {1\over 2}\left [{J}_{ν−1}(x) − {J}_{ν+1}(x)\right ], &\text{(10.36)} \cr x{J}_{ν+1}(x) & = 2ν{J}_{ν}(x) − x{J}_{ν−1}(x), &\text{(10.37)} \cr \mathop{\mathop{\mathop{∫ }\nolimits }}\nolimits {x}^{−ν}{J}_{ ν+1}(x)\kern 1.66702pt dx & = −{x}^{−ν}{J}_{ ν}(x) + C, &\text{(10.38)} \cr \mathop{\mathop{\mathop{∫ }\nolimits }}\nolimits {x}^{ν}{J}_{ ν−1}(x)\kern 1.66702pt dx & = {x}^{ν}{J}_{ ν}(x) + C. &\text{(10.39)} }

Let me prove a few of these. First notice from the definition that {J}_{n}(x) is even or odd if n is even or odd,

{J}_{n}(x) ={ \mathop{∑ }}_{k=0}^{∞} {{(−1)}^{k}\over k!(n + k)!}{\left ({x\over 2}\right )}^{n+2k}.
(10.40)

Substituting x = 0 in the definition of the Bessel function gives 0 if ν > 0, since in that case we have the sum of positive powers of 0, which are all equally zero.

Let’s look at {J}_{−n}:

\begin{eqnarray}{ J}_{−n}(x)& =& {\mathop{∑ }}_{k=0}^{∞} {{(−1)}^{k}\over k!Γ(−n + k + 1)!}{\left ({x\over 2}\right )}^{n+2k} %& \\ & =& {\mathop{∑ }}_{k=n}^{∞} {{(−1)}^{k}\over k!Γ(−n + k + 1)!}{\left ({x\over 2}\right )}^{−n+2k}%& \\ & =& {\mathop{∑ }}_{l=0}^{∞}{{(−1)}^{l+n}\over (l + n)!l!}{\left ({x\over 2}\right )}^{n+2l} %& \\ & =& {(−1)}^{n}{J}_{ n}(x). %&(10.41) \\ \end{eqnarray}

Here we have used the fact that since Γ(−l) = ±∞, 1∕Γ(−l) = 0 [this can also be proven by defining a recurrence relation for 1∕Γ(l)]. Furthermore we changed summation variables to l = −n + k.

The next one:

\begin{eqnarray} {d\over dx}\left [{x}^{−ν}{J}_{ ν}(x)\right ]& =& {2}^{−ν} {d\over dx}\left \{{\mathop{∑ }}_{k=0}^{∞} {{(−1)}^{k}\over k!Γ(ν + k + 1)}{\left ({x\over 2}\right )}^{2k}\right \} %& \\ & =& {2}^{−ν}{ \mathop{∑ }}_{k=1}^{∞} {{(−1)}^{k}\over (k − 1)!Γ(ν + k + 1)}{\left ({x\over 2}\right )}^{2k−1} %& \\ & =& −{2}^{−ν}{ \mathop{∑ }}_{l=0}^{∞} {{(−1)}^{l}\over (l)!Γ(ν + l + 2)}{\left ({x\over 2}\right )}^{2l+1} %& \\ & =& −{2}^{−ν}{ \mathop{∑ }}_{l=0}^{∞} {{(−1)}^{l}\over (l)!Γ(ν + 1 + l + 1)}{\left ({x\over 2}\right )}^{2l+1} %& \\ & =& −{x}^{−ν}{ \mathop{∑ }}_{l=0}^{∞} {{(−1)}^{l}\over (l)!Γ(ν + 1 + l + 1)}{\left ({x\over 2}\right )}^{2l+ν+1}%& \\ & =& −{x}^{−ν}{J}_{ ν+1}(x). %&(10.42) \\ \end{eqnarray}

Similarly

\begin{eqnarray} {d\over dx}\left [{x}^{ν}{J}_{ ν}(x)\right ]& =& {x}^{ν}{J}_{ ν−1}(x).%&(10.43) \\ \end{eqnarray}

The next relation can be obtained by evaluating the derivatives in the two equations above, and solving for {J}_{ν}(x):

\begin{eqnarray}{ x}^{−ν}{J'}_{ ν}(x) − ν{x}^{−ν−1}{J}_{ ν}(x)& =& −{x}^{−ν}{J}_{ ν+1}(x),%&(10.44) \\ {x}^{ν}{J}_{ ν}(x) + ν{x}^{ν−1}{J}_{ ν}(x)& =& {x}^{ν}{J}_{ ν−1}(x). %&(10.45) \\ \end{eqnarray}

Multiply the first equation by {x}^{ν} and the second one by {x}^{−ν} and add:

\begin{eqnarray} −2ν {1\over x}{J}_{ν}(x) = −{J}_{ν+1}(x) + {J}_{ν−1}(x).& & %&(10.46) \\ \end{eqnarray}

After rearrangement of terms this leads to the desired expression.

Eliminating {J}_{ν} between the equations gives (same multiplication, take difference instead)

\begin{eqnarray} 2{J'}_{ν}(x)& =& {J}_{ν+1}(x) + {J}_{ν−1}(x).%&(10.47) \\ \end{eqnarray}

Integrating the differential relations leads to the integral relations.

Bessel function are an inexhaustible subject – there are always more useful properties than one knows. In mathematical physics one often uses specialist books.