7.1 Dimensionless coordinates

The classical energy (Hamiltonian) is

E = {1\over 2}m{\dot{x}}^{2} + {1\over 2}m{ω}^{2}{x}^{2} = {1\over 2m}{p}^{2} + {1\over 2}m{ω}^{2}{x}^{2}
(7.4)

The quantum Hamiltonian operator is thus

\hat{H} = {1\over 2m}\hat{{p}}^{2} + {1\over 2}m{ω}^{2}{x}^{2} = −{{ℏ}^{2}\over 2m} {{d}^{2}\over d{x}^{2}} + {1\over 2}m{ω}^{2}{x}^{2}.
(7.5)

And we thus have to solve Schrödinger’s equation

−{{ℏ}^{2}\over 2m} {{d}^{2}\over d{x}^{2}}ϕ(x) + {1\over 2}m{ω}^{2}{x}^{2}ϕ(x) = Eϕ(x).
(7.6)

In order to treat this equation it is better to remove all the physical constants, and go over to dimensionless coordinates

y = \sqrt{{mω\over ℏ}} x,\qquad ϵ = {E\over ℏω}.
(7.7)

Quiz What is the dimension of {mω\over ℏ} ? and of ℏω? (The dimension of is [ℏ] = \mathrm{mass} ×{\mathrm{length}}^{2}∕\mathrm{time}.)

When we substitute these new variables into the Schrödinger equation we get, using

{d\over dx}f(y) = {dy\over dx} {d\over dy}f(y) = \sqrt{{mω\over ℏ}} {d\over dy}f(y),
(7.8)

that (ϕ(x) = u(y))

−{{ℏ}^{2}\over 2m} {mω\over ℏ} {{d}^{2}\over d{y}^{2}}u(y) + {1\over 2}m{ω}^{2} {ℏ\over mω}{y}^{2}u(y) = ϵℏωu(y).
(7.9)

Cancelling the common factor ℏω we find

{{d}^{2}\over d{y}^{2}}u(y) + (2ϵ − {y}^{2})u(y) = 0
(7.10)