Processing Math: 30%
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

4.1 Assumed knowledge

4.1.1 First principles definition


differential

Figure 4.1: The definition of the differential.

If y=f(x) and x increases from x to x+δx then the change in y is give by δy=f(x+δ)f(x), see Fig. 4.1. The differential is defined as

dxdy=limδx0δxδy=limδx0δxf(x+δx)f(x)

4.1.2 Meaning as slope of a curve


slope

Figure 4.2: The definition of the differential.

The derivative can also be interpreted as the slope of a curve, see Fig. 4.2. If the slope at a given point has an angle θ, we find that tanθ is dxdy. In other words, the line yy0=tanθ(xx0) is tangent to the curve at (x0y0).

4.1.3 Differential of a sum

The differential of a sum is the sum of differentials,

dxd(u+v)=dxdu+dxdv

4.1.4 Differential of product

L&T, F.9.26-27

There exists a simple rule to calculate the differential of a product,

dxd(uv)=udxdv+vdxdu

E.g., if y=x2sinx,

dxdy=x2cos(x)+2xsin(x)

4.1.5 Differential of quotient

L&T, F.9.28-30

In the same way we can find a relation for the differential of a quotient,

dxd(vu)=v2vdxduudxdv

E.g., if y=xsinx,

dxdy=x2xcos(x)sin(x)=xcos(x)x2sin(x)

4.1.6 Function of a function (chain rule)

L&T, F.9.33-36,7.5-18

Often we take a function of a function. In such a case, where y=f(g(x)) we put z=g(x), and find

dxdy=dzdydxdz

This rule is sometimes expressed in words as “the derivative of the function, times the derivative of its argument”, and you may know it as

\class{boxed}{ {dg(f(x))\over dx} = f'(g(x))g'(x). }

Example 4.1: 

Find {dy\over dx} for y =\mathop{ cos}\nolimits (\mathop{ln}\nolimits x).

Solution: 

Put z =\mathop{ ln}\nolimits x so y =\mathop{ cos}\nolimits z,

{dy\over dx} = {dy\over dz},\quad {dz\over dx} = −\mathop{sin}\nolimits z {1\over x} = −{\mathop{sin}\nolimits (\mathop{ln}\nolimits x)\over x} \quad .

Example 4.2: 

Find {dy\over dx} for y ={\mathop{ sin}\nolimits }^{3}(2x − 1).

Solution: 

Put z =\mathop{ sin}\nolimits (2x − 1) so y = {z}^{3},

{dy\over dx} = {dy\over dz} {dz\over dx} = 3{z}^{2}2\mathop{cos}\nolimits (2x − 1) = 6{\mathop{sin}\nolimits }^{2}(2x − 1)\mathop{cos}\nolimits (2x − 1)\quad .

4.1.7 some simple physical examples

Example 4.3: 

Given that x(t) = 5{t}^{2}\text{ m}, find the velocity v(t) and the acceleration a(t).

Solution: 

Using the definitions of velocity as rate of change of position, we find that v =\dot{ x} = {dx\over dt} = 10t\text{ m/s}, and with acceleration as rate of change of velocity, we have a =\dot{ v} =\ddot{ x} = {dv\over dt} = 10\text{ m/s${}^{2}$}.

Example 4.4: 

For simple harmonic motion (SHM) x =\mathop{ cos}\nolimits (ωt). Find the velocity and acceleration.

Solution: 

Use the change rule for differentiation, v =\dot{ x} = −ω\mathop{sin}\nolimits (ωt), a =\dot{ v} = −{ω}^{2}\mathop{ cos}\nolimits (ωt)

4.1.8 Differential of inverse function

L&T, 9.8-13

When we wish to calculate the differential of an inverse function, i.e, a function g such that g(f(x)) = x, we can use our knowledge of the derivative of f to find that of g.

Example 4.5: 

Find the derivative of y ={\mathop{ sin}\nolimits }^{−1}x.

Solution: 

We use y =\mathop{ sin}\nolimits (x) and calculate {dx\over dy} first,

{dx\over dy} = {\mathop{sin}\nolimits y\over dy} =\mathop{ cos}\nolimits y.

Now \mathop{cos}\nolimits y = ±\sqrt{1 −{\mathop{ sin} \nolimits }^{2 } y}, but the slope of the inverse sine is always positive. Thus

{dy\over dx} ={ \left ({dx\over dy}\right )}^{−1} = {1\over \sqrt{1 − {x}^{2}}}.

4.1.9 Maxima and minima

L&T, 9.24-31


minmax

Figure 4.3: The meaning of a minimum and maximum.

At a maximum or minimum the slope is 0 so that {dy\over dx} = 0. To find which case it is, we look at {{d}^{2}y\over d{x}^{2}} , which can easily be done from a plot of the slope.

Example 4.6: 

Find all maxima and minima of y = x(3 − x) and determine their character.

Solution: 

We find that {dy\over dx} = x(−1) + (3 − x)1 = 3 − 2x. For a maximum or minimum the slope must be 0. This happens for 3 − 2x = 0, i.e., x = {3\over 2}. For that value of x, {{d}^{2}y\over d{x}^{2}} = −2. So the point x = 3∕2, y = 9∕4 is a (and the only) maximum.

4.1.10 Higher Derivatives

L&T, F.9.21-22

Higher derivatives are obtained by differentiation 2 or more times, {{d}^{2}y\over d{x}^{2}} = {d(dy∕dx)\over dx} , {{d}^{3}y\over d{x}^{3}} = {d({d}^{2}y∕d{x}^{2})\over dx} .

Example 4.7: 

y =\mathop{ ln}\nolimits x, {dy\over dx} = 1∕x, {{d}^{2}y\over d{x}^{2}} = −{1\over { x}^{2}} , {{d}^{3}y\over d{x}^{3}} = {2\over { x}^{3}} , etc.

Example 4.8: 

The equation for simple harmonic motion (SHM) is {{d}^{2}x\over d{t}^{2}} = −{ω}^{2}x. Prove that x = (A\mathop{cos}\nolimits ωt) + B\mathop{sin}\nolimits ωt satisfies this equation.

Solution: 

We must differentiate twice, start with first derivative, {dx\over dt} = (−ω)A\mathop{sin}\nolimits ωt + ωB\mathop{cos}\nolimits ωt, and find that

\begin{eqnarray*} {{d}^{2}x\over ∕} d{t}^{2}& =& −{ω}^{2}A\mathop{cos}\nolimits ω − {ω}^{2}B\mathop{sin}\nolimits ωt%& \\ & =& −{ω}^{2}(A\mathop{cos}\nolimits ωt + B\mathop{sin}\nolimits ωt)%& \\ & =& −{ω}^{2}x. %& \\ \end{eqnarray*}

QED.

N.B.: SHM not studied here, but in next semester. The constants A, B can only be obtained with extra input.