L&T, 7.26-30
The equation of a circle {x}^{2} + {y}^{2} = {a}^{2} is not in the form y = f(x), (although it can be rearranged to y = ±\sqrt{{a}^{2 } − {x}^{2}}). In this case it is easier to find {dy\over dx} directly without rearranging. Differentiate both sides of the equation {x}^{2} + {y}^{2} = {a}^{2} with respect to x, assuming y to be a function of x. We find 2x + {d{y}^{2}\over dx} = 0. Now use {d({y}^{2})\over dx} = 2y{dy\over dx}. (Proof: Put z = {y}^{2} - need {dz\over dx}, {dz\over dx} = {dz\over dy} {dy\over dx} = 2y{dy\over dx}.) So 2x + 2y{dy\over dx} = 0, or
\class{boxed}{ {dy\over
dx} = −{x\over
y}\quad . }
|
N.B.: This method usually gives {dy\over dx} in terms of both x and y.
Example 4.9:
Find {dy\over dx} for {x}^{2} + 4x + 3xy + {y}^{3} = 6.
Solution:
Differentiating both sides with respect to x we find
2x + 4 + 3y + 3x{dy\over
dx} + 3{y}^{2} {dy\over
dx} = 0\quad ,
|
we thus conclude that
\class{boxed}{{dy\over
dx} = −{(2x + 4 + 3y)\over
(3x + 3{y}^{2})} \quad . }
|
L&T, 7.19-25
If a function has a large number of factors it may be easier to take the logarithm before differentiating, using the fat that the logarithm of a product is the sum of logarithms.
Example 4.10:
Find {dy\over dx} for y = {\sqrt{a+x}\sqrt{b−x}\over x−c} .
Solution:
\mathop{ln}\nolimits y =\mathop{ ln}\nolimits (\sqrt{a + x}) +\mathop{ ln}\nolimits (\sqrt{b − x}) −\mathop{ ln}\nolimits (x − c) = {1\over
2}\mathop{ln}\nolimits (a + x) + {1\over
2}\mathop{ln}\nolimits (b − x) −\mathop{ ln}\nolimits (x − c)\quad .
|
Differentiate both sides with respect to x:
{d\mathop{ln}\nolimits y\over
dx} = {1\over
y} {dy\over
dx}\quad .
|
So
{1\over
y} {dy\over
dx} = {1\over
2} {1\over
(a + x)} + {1\over
2} {(−1)\over
(b − x)} − {1\over
(x − c)}\quad .
|
and thus
\class{boxed}{{dy\over
dx} = {1\over
2}\left ( {1\over
(a + x)} − {1\over
(b − x)} − {2\over
(x − c)}\right ){\sqrt{a + x}\sqrt{b − x}\over
x − c} \quad . }
|
L&T, 7.31-36
Some equations can be written in parametric form, i.e., x = x(t), y = y(t) with t a parameter. We can then find its differential in terms of the parameter. We shall study this by means of an example only.
Example 4.11:
Given circle of radius 4,
{x}^{2} + {y}^{2} = 16
| (4.1) |
use the parametric form to find {dy\over dx} and {{d}^{2}y\over d{x}^{2}} at (2\sqrt{3},2).
Solution:
The parametric form is
x = 4\mathop{cos}\nolimits θ,\quad y = 4\mathop{sin}\nolimits θ\quad ,
|
which clearly satisfies (4.1). Now
\class{boxed}{{dy\over
dx} = {dy\over
df} {df\over
dx} = {{dy\over
dθ}\over
{dx\over
dθ}} = {4\mathop{cos}\nolimits θ\over
−4\mathop{sin}\nolimits θ} = −\mathop{cot}\nolimits θ. }
|
Note: result is in terms of θ. Then y∕4 =\mathop{ sin}\nolimits θ = {1\over 2}, θ = {π\over 6} (must be in first quadrant), and \mathop{cos}\nolimits θ = {\sqrt{3}\over 2} therefore {dy\over dx} = −{{\sqrt{3}\over 2} \over {1\over 2} } = −\sqrt{3}. Now do {{d}^{2}y\over d{x}^{2}} .
Note: {{d}^{2}y\over d{x}^{2}} \mathrel{≠}{{d}^{2}y\over d{θ}^{2}} ∕{{d}^{2}x\over d{θ}^{2}}
Other examples of parametric curves are