4.6 *Application of differentiation: Calculation of small errors*

We know that if y = f(x) then

{dy\over dx} = {\mathop{lim}}_{δx→0}{f(x + δx) − f(x)\over δx} \quad .

Provided that δx is small enough (but not infinitesimally small) {dy\over dx} ≈ {δy\over δx}, so

\class{boxed}{ δy ≈ {dy\over dx}δx\quad . }

Example 4.23: 

We can measure the volume of a sphere by measuring its radius r and then use the formula, V = (4∕3)π{r}^{3}. Suppose we measure r = 6.3 ± 0.02\text{ m}. Find the approximate error in V .

Solution: 

If r = 6.3\text{ m} then V = {4\over 3}π6.3{0}^{3} = 1047.4{\text{ m}}^{3}. The small error δr = 0.02\text{ m} will cause an error in V given by δV ≈ {dV \over dr} δr = 4π{r}^{2}δr = 4π\kern 1.66702pt 6.3{0}^{2}\kern 1.66702pt 0.02 = 10.0{\text{ m}}^{3}. Hence

\class{boxed}{V = 1047.4 ± 10.0{\text{ m}}^{3}. }

Example 4.24: 

We measure the height h of a tower at a distance d, by measuring d and the angle α with the horizontal. We then use the formula \mathop{tan}\nolimits α = (h∕d).

Solution: 

Find error in h due to an error δα in α assuming d to be known exactly. We solve for h, h = d\mathop{tan}\nolimits α, dh∕dα = d{\mathop{sec}\nolimits }^{2}α. Therefore

\class{boxed}{δh ≈ {dh\over dα}δα = d{\mathop{sec}\nolimits }^{2}αδα\quad . }

Example 4.25: 

Given the relation between current, voltage and resistance, I = V∕R, with V = 250\text{ V}, R = 50\ Ω, find the change in the current I 1) if V increases by 1\text{ V}, and 2) if R increases by 1\ Ω.

Solution: 

We use the rule for small changes for partial derivatives,

δI ≈ {∂I\over ∂V }δV + {∂I\over ∂R}δR\kern 1.66702pt .

We find

\begin{eqnarray*} {∂I\over ∂V }& =& {1\over R}\kern 1.66702pt , %& \\ {∂I\over ∂R}& =& {−V \over {R}^{2}} \kern 1.66702pt .%& \\ \end{eqnarray*}

Using the numerical values, we find

δI = {1\over 50} × 1 −{250\over 5{0}^{2}} × 1 = {1\over 50} − {1\over 10} = −{2\over 25} = −0.08\text{ A}