{\mathop{\mathop{\mathop{∫
}\nolimits }}\nolimits }_{b}^{a}f(x)\kern 1.66702pt dx = −{\mathop{\mathop{\mathop{∫
}\nolimits }}\nolimits }_{a}^{b}f(x)\kern 1.66702pt dx.
The definite integral is not just an area!
{\mathop{\mathop{\mathop{∫
}\nolimits }}\nolimits }_{a}^{b}f(x)\kern 1.66702pt dx ={\mathop{ \mathop{\mathop{∫
}\nolimits }}\nolimits }_{a}^{c}f(x)\kern 1.66702pt dx +{\mathop{ \mathop{\mathop{∫
}\nolimits }}\nolimits }_{c}^{b}f(x)\kern 1.66702pt dx.
The value of c
is arbitrary, it doesn’t have to be between a
and b!
{\mathop{\mathop{\mathop{∫
}\nolimits }}\nolimits }_{a}^{b}f(x)dx ≥ 0\text{ if }f(x) ≥ 0.
If m ≤ f(x) ≤ M
and b ≥ a,
then m(b − a) ≤{\mathop{\mathop{\mathop{∫
}\nolimits }}\nolimits }_{a}^{b}f(x)dx ≤ M(b − a).