Warning: jsMath
requires JavaScript to process the mathematics on this page.
If your browser supports JavaScript, be sure it is enabled.
5.4 Improper integrals
We often integrate over an infinite range. Such integrals are called improper . They are defined a s
limits,
{\mathop{\mathop{\mathop{∫
}\nolimits }}\nolimits }_{−∞}^{∞}f(x)\kern 1.66702pt dx ={\mathop{ lim}}_{
a→−∞}{\mathop{\mathop{\mathop{∫
}\nolimits }}\nolimits }_{a}^{b}f(x)\kern 1.66702pt dx\quad .
Example 5.7:
Evaluate {\mathop{\mathop{\mathop{∫
}\nolimits }}\nolimits }_{−∞}^{0}{e}^{x}\kern 1.66702pt dx .
Solution:
Apply the definition
\eqalignno{
{\mathop{\mathop{\mathop{∫
}\nolimits }}\nolimits }_{−∞}^{0}{e}^{x}\kern 1.66702pt dx ={\mathop{ lim}}_{
a→−∞}{\mathop{\mathop{\mathop{∫
}\nolimits }}\nolimits }_{a}^{0}{e}^{x}\kern 1.66702pt dx ={\mathop{ lim}}_{
a→−∞}(1 − {e}^{a}) = 1\quad . & &
}
A inite integral is called convergent, if tyhe limit does not exist the integral is called divergent.
Let us look at a physics example
Example 5.8:
Determine the escape velocity from earth.
Solution:
We need belance of energies. The initial kinetic energy must equal the work done against gravity
to get the object )of mass m
to escape from the gravity field of the earth (mass M ,
radius R )
{1\over
2}m{v}^{2} ={\mathop{ \mathop{\mathop{∫
}\nolimits }}\nolimits }_{R}^{∞}{GmM\over
{r}^{2}} dr
Evaluate the integral as above,
\eqalignno{
{\mathop{\mathop{\mathop{∫
}\nolimits }}\nolimits }_{R}^{∞}{GmM\over
{r}^{2}} dr & = gmM{\mathop{lim}}_{a→∞}{\mathop{\mathop{\mathop{∫
}\nolimits }}\nolimits }_{R}^{a} {1\over {
r}^{2}}dr & &
\cr
& = gmM{\mathop{lim}}_{a→∞}\left (−{1\over
a} + {1\over
R}\right ) & &
\cr
& = {gmM\over
R} & &
}
5.4.1 Divergent integrands
Integrals that require special attentions is those where the integrand diverges. We need to take a
start-point just above and below the singularity, and take a limit. A simple and obvious example
is
{\mathop{\mathop{\mathop{∫
}\nolimits }}\nolimits }_{0}^{1} {1\over
x}dx ={\mathop{ lim}}_{ϵ↓0}{\mathop{ \mathop{\mathop{∫
}\nolimits }}\nolimits }_{ϵ}^{1} {1\over
x}dx ={\mathop{ lim}}_{ϵ↓0}{[\mathop{ln}\nolimits (x)]}_{ϵ}^{1} ={\mathop{ lim}}_{
ϵ↓0}(−\mathop{ln}\nolimits ϵ) = ∞.
Be extrememly careful when the singularity occurs in the middle of the integration interval.
Example 5.9:
Calculate {\mathop{\mathop{\mathop{∫
}\nolimits }}\nolimits }_{−1}^{1} {1\over {
x}^{2}}dx
Solution:
Split the interal into two parts,
\eqalignno{
{\mathop{lim}}_{ϵ↓0}{\mathop{ \mathop{\mathop{∫
}\nolimits }}\nolimits }_{−1}^{−ϵ} {1\over {
x}^{2}}dx +{\mathop{ lim}}_{δ↓0}{\mathop{ \mathop{\mathop{∫
}\nolimits }}\nolimits }_{δ}^{1} {1\over {
x}^{2}}dx & &
\cr
2 +{\mathop{ lim}}_{ϵ↓0}{1\over
ϵ} +{\mathop{ lim}}_{ϵ↓0}{1\over
δ} = ∞. & &
}
The naive answer is 2! So we note that we have to be extremely careful