5.4 Improper integrals

We often integrate over an infinite range. Such integrals are called improper. They are defined a s limits,

{\mathop{\mathop{\mathop{∫ }\nolimits }}\nolimits }_{−∞}^{∞}f(x)\kern 1.66702pt dx ={\mathop{ lim}}_{ a→−∞}{\mathop{\mathop{\mathop{∫ }\nolimits }}\nolimits }_{a}^{b}f(x)\kern 1.66702pt dx\quad .

Example 5.7: 

Evaluate {\mathop{\mathop{\mathop{∫ }\nolimits }}\nolimits }_{−∞}^{0}{e}^{x}\kern 1.66702pt dx.

Solution: 

Apply the definition

\eqalignno{ {\mathop{\mathop{\mathop{∫ }\nolimits }}\nolimits }_{−∞}^{0}{e}^{x}\kern 1.66702pt dx ={\mathop{ lim}}_{ a→−∞}{\mathop{\mathop{\mathop{∫ }\nolimits }}\nolimits }_{a}^{0}{e}^{x}\kern 1.66702pt dx ={\mathop{ lim}}_{ a→−∞}(1 − {e}^{a}) = 1\quad . & & }

A inite integral is called convergent, if tyhe limit does not exist the integral is called divergent.

Let us look at a physics example

Example 5.8: 

Determine the escape velocity from earth.

Solution: 

We need belance of energies. The initial kinetic energy must equal the work done against gravity to get the object )of mass m to escape from the gravity field of the earth (mass M, radius R)

{1\over 2}m{v}^{2} ={\mathop{ \mathop{\mathop{∫ }\nolimits }}\nolimits }_{R}^{∞}{GmM\over {r}^{2}} dr

Evaluate the integral as above,

\eqalignno{ {\mathop{\mathop{\mathop{∫ }\nolimits }}\nolimits }_{R}^{∞}{GmM\over {r}^{2}} dr & = gmM{\mathop{lim}}_{a→∞}{\mathop{\mathop{\mathop{∫ }\nolimits }}\nolimits }_{R}^{a} {1\over { r}^{2}}dr & & \cr & = gmM{\mathop{lim}}_{a→∞}\left (−{1\over a} + {1\over R}\right ) & & \cr & = {gmM\over R} & & }

5.4.1 Divergent integrands

Integrals that require special attentions is those where the integrand diverges. We need to take a start-point just above and below the singularity, and take a limit. A simple and obvious example is

{\mathop{\mathop{\mathop{∫ }\nolimits }}\nolimits }_{0}^{1} {1\over x}dx ={\mathop{ lim}}_{ϵ↓0}{\mathop{ \mathop{\mathop{∫ }\nolimits }}\nolimits }_{ϵ}^{1} {1\over x}dx ={\mathop{ lim}}_{ϵ↓0}{[\mathop{ln}\nolimits (x)]}_{ϵ}^{1} ={\mathop{ lim}}_{ ϵ↓0}(−\mathop{ln}\nolimits ϵ) = ∞.

Be extrememly careful when the singularity occurs in the middle of the integration interval.

Example 5.9: 

Calculate {\mathop{\mathop{\mathop{∫ }\nolimits }}\nolimits }_{−1}^{1} {1\over { x}^{2}}dx

Solution: 

Split the interal into two parts,

\eqalignno{ {\mathop{lim}}_{ϵ↓0}{\mathop{ \mathop{\mathop{∫ }\nolimits }}\nolimits }_{−1}^{−ϵ} {1\over { x}^{2}}dx +{\mathop{ lim}}_{δ↓0}{\mathop{ \mathop{\mathop{∫ }\nolimits }}\nolimits }_{δ}^{1} {1\over { x}^{2}}dx & & \cr 2 +{\mathop{ lim}}_{ϵ↓0}{1\over ϵ} +{\mathop{ lim}}_{ϵ↓0}{1\over δ} = ∞. & & }

The naive answer is 2! So we note that we have to be extremely careful