1.2 Polar Form of Complex Numbers


argand

Figure 1.1: Complex number as a vector

1.2.1 Vector Representation

A complex number z = x + iy has two real components: the real part \text{Re}(z) = x and the imaginary part \text{Im}(z) = y. Let us write them in the form of a 2D vector, cf. Fig. 1.1.

\begin{eqnarray} z = x + iy ↔ r = (x,y).& & %&(1.16) \\ \end{eqnarray}

Polar Form: Any complex number z = x + iy can be written in polar form, (remember that r = (r\mathop{cos}\nolimits θ,r\mathop{sin}\nolimits θ) in polar coordinates)

\begin{eqnarray} z& =& x + iy = r\mathop{cos}\nolimits (θ) + ir\mathop{sin}\nolimits (θ)%& \\ x& =& r\mathop{cos}\nolimits (θ),\quad y = r\mathop{sin}\nolimits (θ) %& \\ r& =& \sqrt{{x}^{2 } + {y}^{2}} = \sqrt{z\bar{z}} %& \\ \mathop{tan}\nolimits (θ)& =& {y\over x} ⇝ θ =\mathop{ arctan}\nolimits \left ({y\over x}\right ). %&(1.17) \\ \end{eqnarray}

1.2.2 Argument and Modulus

The length of the vector r = (x,y) representing the complex number z = x + iy,

\begin{eqnarray} |z| := r = \sqrt{{x}^{2 } + {y}^{2}} = \sqrt{z\bar{z}}& & %&(1.18) \\ \end{eqnarray}

is called modulus of z.

The angle θ,

\begin{eqnarray} \mathop{arg}\nolimits (z) := θ =\mathop{ arctan}\nolimits \left ({y\over x}\right )& & %&(1.19) \\ \end{eqnarray}

is called the argument of z. The angle θ is usually restricted to − π < θ ≤ π, even though any interval of length will do, and we sometimes use 0 ≤ θ < 2π.

1.2.3 Manipulations in Vector/Polar Form

Addition:

\begin{eqnarray} (x,y)& ↔& z = x + iy %& \\ ({x}_{1},{y}_{1}) + ({x}_{2},{y}_{2}) = ({x}_{1} + {x}_{2},{y}_{1} + {y}_{2})& ↔& {z}_{1} + {z}_{2} = ({x}_{1} ± {x}_{2}) + i({y}_{1} ± {y}_{2}).%&(1.20) \\ \end{eqnarray}

Therefore, we have to add the vectors representing the complex numbers.

Complex Conjugate:

\begin{eqnarray} z& =& x + iy = r\mathop{cos}\nolimits (θ) + ir\mathop{sin}\nolimits (θ) ⇝ %& \\ \bar{z}& =& x − iy = r\mathop{cos}\nolimits (θ) − ir\mathop{sin}\nolimits (θ) = r\mathop{cos}\nolimits (−θ) + ir\mathop{sin}\nolimits (−θ).%&(1.21) \\ \end{eqnarray}

The angle becomes negative: check what this means geometrically!

Multiplication:

\begin{eqnarray} {z}_{1}& =& {r}_{1}\mathop{ cos}\nolimits ({θ}_{1}) + i{r}_{1}\mathop{ sin}\nolimits ({θ}_{1}),\quad {z}_{2} = {r}_{2}\mathop{ cos}\nolimits ({θ}_{2}) + i{r}_{2}\mathop{ sin}\nolimits ({θ}_{2}) ⇝ %& \\ {z}_{1}{z}_{2}& =& {r}_{1}{r}_{2}[\mathop{cos}\nolimits ({θ}_{1})\mathop{cos}\nolimits ({θ}_{2}) −\mathop{ sin}\nolimits ({θ}_{1})\mathop{sin}\nolimits ({θ}_{2})] + i{r}_{1}{r}_{2}[\mathop{cos}\nolimits ({θ}_{1})\mathop{sin}\nolimits ({θ}_{2}) +\mathop{ sin}\nolimits ({θ}_{1})\mathop{cos}\nolimits ({θ}_{2})]%& \\ & =& {r}_{1}{r}_{2}[\mathop{cos}\nolimits ({θ}_{1} + {θ}_{2}) + i\mathop{sin}\nolimits ({θ}_{1} + {θ}_{2})] %&(1.22) \\ \end{eqnarray}

This means that

\begin{eqnarray} |{z}_{1}{z}_{2}| = |{z}_{1}||{z}_{2}|,\quad \mathop{arg}\nolimits ({z}_{1}{z}_{2}) =\mathop{ arg}\nolimits ({z}_{1}) +\mathop{ arg}\nolimits ({z}_{2}).& & %&(1.23) \\ \end{eqnarray}

Try to sketch an example for this in the x − y diagram for yourself!

1.2.4 Complex exponential

Let us differentiate a complex number of unit modulus, z =\mathop{ cos}\nolimits θ + i\mathop{sin}\nolimits θ w.r.t. θ.

{d\over dθ}(\mathop{cos}\nolimits θ + i\mathop{sin}\nolimits θ) = −\mathop{sin}\nolimits θ + i\mathop{cos}\nolimits θ = i(\mathop{cos}\nolimits θ + i\mathop{sin}\nolimits θ).
(1.24)

In short,

{d\over dθ}z = iz
(1.25)

This suggests that we can write z as z = {e}^{iθ}. We shall construct further proof the consistency of this suggestion (which can also be used to define the complex exponent) below.

1.2.5 De Moivre’s Theorem

We can easily generalise the multiplication of two complex numbers in polar form to calculcate an arbitrary power of z, {z}^{n} (integer n):

\begin{eqnarray} z& =& r[\mathop{cos}\nolimits (θ) + i\mathop{sin}\nolimits (θ)] ⇝ %& \\ {z}^{2}& =& {r}^{2}[\mathop{cos}\nolimits (2θ) + i\mathop{sin}\nolimits (2θ)] ⇝ %& \\ {z}^{3}& =& z{z}^{2} = {r}^{3}[\mathop{cos}\nolimits (3θ) + i\mathop{sin}\nolimits (3θ)] ⇝ %& \\ & \mathop{\mathop{⋮}}& %&(1.26) \\ {z}^{n}& =& {r}^{n}[\mathop{cos}\nolimits (nθ) + i\mathop{sin}\nolimits (nθ)] ⇝ %& \\ & & %&(1.27) \\ \end{eqnarray}

Since {z}^{n} = {r}^{n}{[\mathop{cos}\nolimits (θ) + i\mathop{sin}\nolimits (θ)]}^{n}, this means

\begin{eqnarray}{ [\mathop{cos}\nolimits (θ) + i\mathop{sin}\nolimits (θ)]}^{n} =\mathop{ cos}\nolimits (nθ) + i\mathop{sin}\nolimits (nθ)& & %&(1.28) \\ \end{eqnarray}

which is a useful equation for proving trigonometric identities; it is also useful for doing many integrals that occur in physics.

Example:

\begin{eqnarray} {[\mathop{cos}\nolimits (θ) + i\mathop{sin}\nolimits (θ)]}^{2}& =& [\mathop{cos}\nolimits (2θ) + i\mathop{sin}\nolimits (2θ)] ⇔ %& \\ {\mathop{cos}\nolimits }^{2}(θ) −{\mathop{ sin}\nolimits }^{2}(θ) + 2i\mathop{cos}\nolimits (θ)\mathop{sin}\nolimits (θ)& =& \mathop{cos}\nolimits (2θ) + i\mathop{sin}\nolimits (2θ) ⇒ %& \\ \mathop{cos}\nolimits (2θ) ={\mathop{ cos}\nolimits }^{2}(θ) −{\mathop{ sin}\nolimits }^{2}(θ)& , & \quad \mathop{sin}\nolimits (2θ) = 2\mathop{cos}\nolimits (θ)\mathop{sin}\nolimits (θ).%&(1.29) \\ \end{eqnarray}

Clearly, this is entirely consistent with the properties of the exponent: {({e}^{iθ})}^{n} = {({e}^{a})}^{b} with a = iθ and b = n is {e}^{ab} = {e}^{inθ}.