Warning:
jsMath
requires JavaScript to process the mathematics on this page.
If your browser supports JavaScript, be sure it is enabled.
[forward]
[back]
[up]
Chapter 1
Complex Numbers
1.1
Basic Properties
1.1.1
Introduction
1.1.2
Basic Definitions
1.2
Polar Form of Complex Numbers
1.2.1
Vector Representation
1.2.2
Argument and Modulus
1.2.3
Manipulations in Vector/Polar Form
1.2.4
Complex exponential
1.2.5
De Moivre’s Theorem
1.3
The Exponential Function
1.3.1
A Power Series for
{e}^{x}
1.3.2
Power Series for
\mathop{sin}\nolimits (x)
and
\mathop{cos}\nolimits (x)
1.4
Euler’s Formula
1.4.1
The Unit Circle
1.4.2
Roots,
n
–th roots of unity
1.5
Trigonometric and Hyperbolic Functions
1.5.1
Definitions
1.5.2
Inverse hyperbolic functions
1.5.3
Derivatives
1.5.4
Hyperbolic Identities
[forward]
[back]
[up]