5.4 Inverse of a Matrix

5.4.1 Motivation

Solving the linear two–by–two system Eq. (5.1) for the components x, y of the vector x, is equivalent to the matrix equation

\begin{eqnarray} Ax = \left (\array{ a&b\cr c &d } \right )\left (\array{ x\cr y } \right ) = \left (\array{ ax + by\cr cx + dy } \right ) = v = \left (\array{ e\cr f } \right ).& & %&(5.32)\\ \end{eqnarray}

We recognise that in order to explicitely solving this for x, we have to invert the operation A.

5.4.2 Definition and Theorem

The inverse {A}^{−1} of a two–by–two matrix A is defined as the matrix fulfilling {A}^{−1}A = A{A}^{−1} = I,\quad I = \left (\array{ 1&0 \cr 0&1 } \right )

The determinant \mathop{det}(A) of a two–by–two matrix A is defined as \mathop{det}\left (\array{ a&b\cr c &d } \right ) ≡\left |\array{ a&b\cr c &d } \right | := ad−cb.

Theorem Consider the two–by–two matrix

\begin{eqnarray} A = \left (\array{ a&b\cr c &d } \right ).& & %&(5.33)\\ \end{eqnarray}

If the determinant of A is non–zero, i.e. \mathop{det}(A) = ad − cb\mathrel{≠}0, the inverse of A exists and is given by

\begin{eqnarray}{ A}^{−1} = {1\over ad − cb}\left (\array{ d & − b\cr − c & a } \right ) ≡\left (\array{ {d\over ad−cb}& {−b\over ad−cb} \cr {−c\over ad−cb}& {a\over ad−cb} } \right ).& & %&(5.34)\\ \end{eqnarray}

For the proof of this, we just multiply A with {A}^{−1} and {A}^{−1} with A:

\begin{eqnarray} A{A}^{−1} = \left (\array{ a&b \cr c&d } \right ) {1\over ad − cb}\left (\array{ d & − b\cr − c & a } \right ) = {1\over ad − cb}\left (\array{ ad − bc& − ab + ba\cr cd − dc & − cb + da } \right ) = \left (\array{ 1&0\cr 0 &1 } \right ).& & %&(5.35)\\ \end{eqnarray}

Exercise: Check the same for {A}^{−1}A.

Examples

\begin{eqnarray*} A& =& \left (\array{ 1& 3\cr 2 & −1 } \right ) ⇝\mathop{ det}(A) = −1 − 6\mathrel{≠}0,\quad {A}^{−1} = {1\over −7}\left (\array{ − 1& − 3\cr − 2 & 1 } \right ) = \left (\array{ {1\over 7}& {3\over 7} \cr {2\over 7}&{−1\over 7}} \right )%& \\ A& =& \left (\array{ 3&6\cr 2 &4 } \right ) ⇝\mathop{ det}(A) = 3 ⋅ 4 − 2 ⋅ 6 = 0 ⇝ {A}^{−1}\text{does not exist.} %&\\ \end{eqnarray*}

Solving the Linear Equations (5.1Two–by–Two Matrices)

We are now in a position to solve Eq. (5.1) by the inverse of a matrix:

\begin{eqnarray} Ax& =& v ⇔ {A}^{−1}Ax = {A}^{−1}v ⇔ x = {A}^{−1}v %& \\ ⇝\left (\array{ x\cr y } \right )& =& {1\over ad − cb}\left (\array{ d & − b\cr − c & a } \right )\left (\array{ e\cr f } \right ) = \left (\array{ {de−bf\over ad−bc} \cr {−ce+af\over ad−bc} } \right ).%&(5.36)\\ \end{eqnarray}