Warning: jsMath
requires JavaScript to process the mathematics on this page.
If your browser supports JavaScript, be sure it is enabled.
1.5 Trigonometric and Hyperbolic Functions
1.5.1 Definitions
We recall Euler’s formula for the sine and cosine,
\begin{eqnarray}
\mathop{exp}\nolimits (ix) =\mathop{ cos}\nolimits (x) + i\mathop{sin}\nolimits (x),& & %&(1.59) \\
\end{eqnarray}
where x is
a real number. From this, we can express sine and cosine as
\begin{eqnarray}
\mathop{cos}\nolimits (x)& :=& {1\over
2}\left ({e}^{ix} + {e}^{−ix}\right ) %&
\\
\mathop{sin}\nolimits (x)& :=& {1\over
2i}\left ({e}^{ix} − {e}^{−ix}\right ).%&(1.60) \\
\end{eqnarray}
We now define the hyperbolic functions ‘hyperbolic cosine’ and ‘hyperbolic sine’ as
\begin{eqnarray}
\mathop{cosh}\nolimits (x)& :=& {1\over
2}\left ({e}^{x} + {e}^{−x}\right ) %&
\\
\mathop{sinh}\nolimits (x)& :=& {1\over
2}\left ({e}^{x} − {e}^{−x}\right ),%&(1.61) \\
\end{eqnarray}
i.e. analogous to cosine and sine but without the imaginary unit
i . Using
{i}^{2} = −1 , we
recognise that
\begin{eqnarray}
\mathop{cosh}\nolimits (x) =\mathop{ cos}\nolimits (ix),\quad \mathop{sinh}\nolimits (x) = −i\mathop{sin}\nolimits (ix),& & %&(1.62) \\
\end{eqnarray}
which means that trigonometric and hyperbolic functions are closely related. Their behaviour as a function of
x ,
however, is different: while sine and cosine are oscillatory functions, the hyperbolic functions
\mathop{cosh}\nolimits (x) and
\mathop{sinh}\nolimits (x) are not oscillatory, because they
are just linear combinations of {e}^{x}
and {e}^{−x}
which are not oscillatory. We have the following properties:
\begin{eqnarray}
\mathop{cosh}\nolimits (0)& =& 1,\quad \mathop{cosh}\nolimits (x) =\mathop{ cosh}\nolimits (−x) %&(1.63)
\\
\mathop{cosh}\nolimits (x →∞)& →& {1\over
2}{e}^{x} {→}_{
x→∞}∞,\quad \mathop{cosh}\nolimits (x →−∞) → {1\over
2}{e}^{−x} {→}_{
x→−∞}∞ %&
\\
\mathop{sinh}\nolimits (0)& =& 0,\quad \mathop{sinh}\nolimits (x) = −\mathop{sinh}\nolimits (−x) %&
\\
\mathop{sinh}\nolimits (x →∞)& →& {1\over
2}{e}^{x} {→}_{
x→∞}∞,\quad \mathop{sinh}\nolimits (x →−∞) →−{1\over
2}{e}^{−x} {→}_{
x→−∞}−∞.%& \\
\end{eqnarray}
from which we already can sketch the two hyperbolic functions, see Fig. 1.2 .
In addition, one defines the hyperbolic tangent and cotangent
\begin{eqnarray}
\mathop{tanh}\nolimits (x) := {\mathop{sinh}\nolimits (x)\over
\mathop{cosh}\nolimits (x)},\quad \mathop{coth}\nolimits (x) := {\mathop{cosh}\nolimits (x)\over
\mathop{sinh}\nolimits (x)} .& & %&(1.64) \\
\end{eqnarray}
1.5.2 Inverse hyperbolic functions
Inverting
\begin{eqnarray}
y =\mathop{ sinh}\nolimits (x) → x ={\mathop{ sinh}\nolimits }^{−1}(y),& & %&(1.65) \\
\end{eqnarray}
we find the inverse hyperbolic sine {\mathop{sinh}\nolimits }^{−1}
by setting
\begin{eqnarray}
y = {{e}^{x} − {e}^{−x}\over
2} ⇝ {e}^{2x} − 2y{e}^{x} − 1 = 0.& & %&(1.66) \\
\end{eqnarray}
This is a quadratic equation in u = {e}^{x}
with the solutions
\begin{eqnarray}{
u}_{±} = y ±\sqrt{{y}^{2 } + 1}.& & %&(1.67) \\
\end{eqnarray}
Since u = {e}^{x} > 0 is positive, we must take
the positive solution {u}_{+} and must
discard the negative solution {u}_{−} .
Therefore,
\begin{eqnarray}{
e}^{x} ≡ u = y + \sqrt{{y}^{2 } + 1} ⇝ x =\mathop{ ln}\nolimits \left (y + \sqrt{{y}^{2 } + 1}\right ),& & %&(1.68) \\
\end{eqnarray}
which means that
\begin{eqnarray}
{\mathop{sinh}\nolimits }^{−1}(y) =\mathop{ ln}\nolimits \left (y + \sqrt{{y}^{2 } + 1}\right ).& & %&(1.69) \\
\end{eqnarray}
Similarly, one obtains
\begin{eqnarray}
{\mathop{tanh}\nolimits }^{−1}(y) = {1\over
2}\mathop{ln}\nolimits \left [{1 + y\over
1 − y}\right ].& & %&(1.70) \\
\end{eqnarray}
The {\mathop{cosh}\nolimits }^{−1} is a
bit more tricky.
1.5.3 Derivatives
These are obtained by going back to the definitions of the hyperbolic functions.
\begin{eqnarray}
\mathop{sinh}\nolimits '(x) =\mathop{ cosh}\nolimits (x),\quad \mathop{cosh}\nolimits '(x) =\mathop{ sinh}\nolimits (x),\quad \mathop{tanh}\nolimits '(x) = 1 −{\mathop{ tanh}\nolimits }^{2}(x).& & %&(1.71) \\
\end{eqnarray}
1.5.4 Hyperbolic Identities
These also are obtained by using the definitions of \mathop{cosh}\nolimits
and \mathop{sinh}\nolimits :
\begin{eqnarray}
{\mathop{cosh}\nolimits }^{2}(x) −{\mathop{ sinh}\nolimits }^{2}(x)& =& 1,\quad \mathop{cosh}\nolimits (2x) = 1 + 2{\mathop{sinh}\nolimits }^{2}(x)%&
\\
\mathop{sinh}\nolimits (2x)& =& 2\mathop{sinh}\nolimits (x)\mathop{cosh}\nolimits (x). %&(1.72) \\
\end{eqnarray}