Warning: jsMath
requires JavaScript to process the mathematics on this page.
If your browser supports JavaScript, be sure it is enabled.
7.1 Polar coordinates
Polar coordinates in two dimensions are defined by
\begin{eqnarray}
x = ρ\mathop{cos}\nolimits ϕ,y = ρ\mathop{sin}\nolimits ϕ,& & %&(7.1)
\\
ρ = \sqrt{{x}^{2 } + {y}^{2}},ϕ =\mathop{ arctan}\nolimits (y∕x),& & %&(7.2) \\
\end{eqnarray}
as indicated schematically in Fig. 7.1 .
Using the chain rule we find
\begin{eqnarray}
{∂\ \over
∂x}& =& {∂ρ\over
∂x} {∂\ \over
∂ρ} + {∂ϕ\over
∂x} {∂\ \over
∂ϕ} %&
\\
& =& {x\over
ρ} {∂\ \over
∂ρ} − {y\over {
ρ}^{2}} {∂\ \over
∂ϕ} %&
\\
& =& \mathop{cos}\nolimits ϕ {∂\ \over
∂ρ} −{\mathop{sin}\nolimits ϕ\over
ρ} {∂\ \over
∂ϕ},%&(7.3)
\\
{∂\ \over
∂y}& =& {∂ρ\over
∂y} {∂\ \over
∂ρ} + {∂ϕ\over
∂y} {∂\ \over
∂ϕ} %&
\\
& =& {y\over
ρ} {∂\ \over
∂ρ} + {x\over {
ρ}^{2}} {∂\ \over
∂ϕ} %&
\\
& =& \mathop{sin}\nolimits ϕ {∂\ \over
∂ρ} + {\mathop{cos}\nolimits ϕ\over
ρ} {∂\ \over
∂ϕ},%&(7.4) \\
\end{eqnarray}
We can write
\begin{eqnarray}
\mathop{∇}& =&{ \hat{e}}_{ρ} {∂\ \over
∂ρ} +\hat{{ e}}_{ϕ}{1\over
ρ} {∂\ \over
∂ϕ}%&(7.5) \\
\end{eqnarray}
where the unit vectors
\begin{eqnarray}
\hat{{e}}_{ρ}& =& (\mathop{cos}\nolimits ϕ,\mathop{sin}\nolimits ϕ), %&
\\
\hat{{e}}_{ϕ}& =& (−\mathop{sin}\nolimits ϕ,\mathop{cos}\nolimits ϕ),%&(7.6) \\
\end{eqnarray}
are an orthonormal set. We say that circular coordinates are orthogonal .
We can now use this to evaluate {\mathop{∇}}^{2} ,
\begin{eqnarray}{
\mathop{∇}}^{2}& =& {\mathop{cos}\nolimits }^{2}ϕ {{∂}^{2}\ \over
∂{ρ}^{2}} + {\mathop{sin}\nolimits ϕ\mathop{cos}\nolimits ϕ\over
{ρ}^{2}} {∂\ \over
∂ϕ} + {{\mathop{sin}\nolimits }^{2}ϕ\over
ρ} {∂\ \over
∂ρ} + {{\mathop{sin}\nolimits }^{2}ϕ\over
{ρ}^{2}} {{∂}^{2}\ \over
∂{ϕ}^{2}} + {\mathop{sin}\nolimits ϕ\mathop{cos}\nolimits ϕ\over
{ρ}^{2}} {∂\ \over
∂ϕ} %&
\\
& & +{\mathop{sin}\nolimits }^{2}ϕ {{∂}^{2}\ \over
∂{ρ}^{2}} −{\mathop{sin}\nolimits ϕ\mathop{cos}\nolimits ϕ\over
{ρ}^{2}} {∂\ \over
∂ϕ} + {{\mathop{cos}\nolimits }^{2}ϕ\over
ρ} {∂\ \over
∂ρ} + {{\mathop{cos}\nolimits }^{2}ϕ\over
{ρ}^{2}} {{∂}^{2}\ \over
∂{ϕ}^{2}} −{\mathop{sin}\nolimits ϕ\mathop{cos}\nolimits ϕ\over
{ρ}^{2}} {∂\ \over
∂ϕ}%&(7.7)
\\
& =& {{∂}^{2}\ \over
∂{ρ}^{2}} + {1\over
ρ} {∂\ \over
∂ρ} + {1\over {
ρ}^{2}} {{∂}^{2}\ \over
∂{ϕ}^{2}} %&
\\
& =& {1\over
ρ} {∂\ \over
∂ρ}\left (ρ {∂\ \over
∂ρ}\right ) + {1\over {
ρ}^{2}} {{∂}^{2}\ \over
∂{ϕ}^{2}}. %&
\\
& & %&(7.8) \\
\end{eqnarray}
A final useful relation is the integration over these coordinates.
As indicated schematically in Fig. 7.2 , the surface related to a change
ρ → ρ + δρ ,
ϕ → ϕ + δϕ is
ρδρδϕ . This leads us to the conclusion
that an integral over x,y
can be rewritten as
{\mathop{\mathop{\mathop{∫
}\nolimits }}\nolimits }_{V }f(x,y)dxdy ={\mathop{ \mathop{\mathop{∫
}\nolimits }}\nolimits }_{V }f(ρ\mathop{cos}\nolimits ϕ,ρ\mathop{sin}\nolimits ϕ)ρdρdϕ
(7.9)