7.2 spherical coordinates

Spherical coordinates are defined as

\begin{eqnarray} x = r\mathop{cos}\nolimits ϕ\mathop{sin}\nolimits θ,\kern 2.77695pt y = r\mathop{sin}\nolimits ϕ\mathop{sin}\nolimits θ,\kern 2.77695pt z = r\mathop{cos}\nolimits θ,& & %&(7.10) \\ r = \sqrt{{x}^{2 } + {y}^{2 } + {z}^{2}},\kern 2.77695pt ϕ =\mathop{ arctan}\nolimits (y∕x),\kern 2.77695pt θ =\mathop{ arctan}\nolimits \left ({\sqrt{{x}^{2 } + {y}^{2}}\over z} \right ),& & %&(7.11) \\ \end{eqnarray}

as indicated schematically in Fig. 7.3.


spherical


Figure 7.3: Spherical coordinates

Using the chain rule we find

\begin{eqnarray} {∂\ \over ∂x}& =& {∂r\over ∂x} {∂\ \over ∂r} + {∂ϕ\over ∂x} {∂\ \over ∂ϕ} + {∂θ\over ∂x} {∂\ \over ∂θ} %& \\ & =& {x\over r} {∂\ \over ∂r} − {y\over { x}^{2} + {y}^{2}} {∂\ \over ∂ϕ} + {xz\over { r}^{2}\sqrt{{x}^{2 } + {y}^{2}}} {∂\ \over ∂θ} %& \\ & =& \mathop{sin}\nolimits θ\mathop{cos}\nolimits ϕ {∂\ \over ∂r} − {\mathop{sin}\nolimits ϕ\over r\mathop{sin}\nolimits θ} {∂\ \over ∂ϕ} + {\mathop{cos}\nolimits ϕ\mathop{cos}\nolimits θ\over r} {∂\ \over ∂θ},%&(7.12) \\ {∂\ \over ∂y}& =& {∂r\over ∂y} {∂\ \over ∂r} + {∂ϕ\over ∂y} {∂\ \over ∂ϕ} + {∂θ\over ∂y} {∂\ \over ∂θ} %& \\ & =& {y\over r} {∂\ \over ∂r} + {x\over { x}^{2} + {y}^{2}} {∂\ \over ∂ϕ} + {yz\over { r}^{2}\sqrt{{x}^{2 } + {y}^{2}}} {∂\ \over ∂θ} %& \\ & =& \mathop{sin}\nolimits θ\mathop{sin}\nolimits ϕ {∂\ \over ∂r} + {\mathop{cos}\nolimits ϕ\over r\mathop{sin}\nolimits θ} {∂\ \over ∂ϕ} + {\mathop{sin}\nolimits ϕ\mathop{cos}\nolimits θ\over r} {∂\ \over ∂θ}, %&(7.13) \\ {∂\ \over ∂z}& =& {∂r\over ∂z} {∂\ \over ∂r} + {∂ϕ\over ∂z} {∂\ \over ∂ϕ} + {∂θ\over ∂z} {∂\ \over ∂θ} %& \\ & =& {z\over r} {∂\ \over ∂r} −{\sqrt{{x}^{2 } + {y}^{2}}\over {r}^{2}} {∂\ \over ∂θ} %& \\ & =& \mathop{sin}\nolimits θ\mathop{sin}\nolimits ϕ {∂\ \over ∂r} −{\mathop{sin}\nolimits θ\over r} {∂\ \over ∂θ}. %&(7.14) \\ & & %&(7.15) \\ \end{eqnarray}

once again we can write \mathop{∇} in terms of these coordinates.

\begin{eqnarray} \mathop{∇}& =& \hat{{e}}_{r} {∂\ \over ∂r} +\hat{{ e}}_{ϕ} {1\over r\mathop{sin}\nolimits θ} {∂\ \over ∂ϕ} +\hat{{ e}}_{θ}{1\over r} {∂\ \over ∂θ}%&(7.16) \\ \end{eqnarray}

where the unit vectors

\begin{eqnarray} \hat{{e}}_{r}& =& (\mathop{sin}\nolimits θ\mathop{cos}\nolimits ϕ,\mathop{sin}\nolimits θ\mathop{sin}\nolimits ϕ,\mathop{cos}\nolimits θ), %& \\ \hat{{e}}_{ϕ}& =& (−\mathop{sin}\nolimits ϕ,\mathop{cos}\nolimits ϕ,0), %& \\ \hat{{e}}_{θ}& =& (\mathop{cos}\nolimits ϕ\mathop{cos}\nolimits θ,\mathop{sin}\nolimits ϕ\mathop{cos}\nolimits θ,−\mathop{sin}\nolimits θ).%&(7.17) \\ \end{eqnarray}

are an orthonormal set. We say that spherical coordinates are orthogonal.

We can use this to evaluate Δ ={ \mathop{∇}}^{2},

Δ = {1\over { r}^{2}} {∂\ \over ∂r}\left ({r}^{2} {∂\ \over ∂r}\right ) + {1\over { r}^{2}} {1\over \mathop{sin}\nolimits θ} {∂\ \over ∂θ}\left (\mathop{sin}\nolimits θ {∂\ \over ∂θ}\right ) + {1\over { r}^{2}} {{∂}^{2}\ \over ∂{ϕ}^{2}}
(7.18)

spherical2


Figure 7.4: Integration in spherical coordinates

Finally, for integration over these variables we need to know the volume of the small cuboid contained between r and r + δr, θ and θ + δθ and ϕ and ϕ + δϕ. The length of the sides due to each of these changes is δr, rδθ and r\mathop{sin}\nolimits θδθ, respectively. We thus conclude that

{\mathop{\mathop{\mathop{∫ }\nolimits }}\nolimits }_{V }f(x,y,z)dxdydz ={\mathop{ \mathop{\mathop{∫ }\nolimits }}\nolimits }_{V }f(r,θ,ϕ){r}^{2}\mathop{ sin}\nolimits θdrdθdϕ.
(7.19)