8.3 Putting it all together
In summary, we have
u(ρ,ϕ) = {{A}_{0}\over
2} +{ \mathop{∑
}}_{n=1}^{∞}{ρ}^{n}\left ({A}_{
n}\mathop{ cos}\nolimits nϕ + {B}_{n}\mathop{ sin}\nolimits nϕ\right ).
| (8.28) |
The one remaining boundary condition can now be used to determine the coefficients
{A}_{n} and
{B}_{n},
\begin{eqnarray}
U(c,ϕ)& =& {{A}_{0}\over
2} +{ \mathop{∑
}}_{n=1}^{∞}{c}^{n}\left ({A}_{
n}\mathop{ cos}\nolimits nϕ + {B}_{n}\mathop{ sin}\nolimits nϕ\right ) %&
\\
& =& \left \{\array{
100\quad &\text{if $0 < ϕ < π$}\cr
0 \quad &\text{if $π < ϕ < 2π$} } \right .\quad .%&(8.29)\\
\end{eqnarray}
We find
\begin{eqnarray}
{A}_{0}& =& {1\over
π}{\mathop{\mathop{\mathop{∫
}\nolimits }}\nolimits }_{0}^{π}100\kern 1.66702pt dϕ = 100, %&
\\
{c}^{n}{A}_{
n}& =& {1\over
π}{\mathop{\mathop{\mathop{∫
}\nolimits }}\nolimits }_{0}^{π}100\mathop{cos}\nolimits nϕ\kern 1.66702pt dϕ = {100\over
nπ} \mathop{sin}\nolimits (nϕ){|}_{0}^{π} = 0, %&
\\
{c}^{n}{B}_{
n}& =& {1\over
π}{\mathop{\mathop{\mathop{∫
}\nolimits }}\nolimits }_{0}^{π}100\mathop{sin}\nolimits nϕ\kern 1.66702pt dϕ = −{100\over
nπ} \mathop{cos}\nolimits (nϕ){|}_{0}^{π} %&
\\
& =& \left \{\array{
200∕(nπ)\quad &\text{if $n$ is odd}\cr
0 \quad &\text{if $n$ is even} } \right .\quad .%&(8.30)\\
\end{eqnarray}
In summary
u(ρ,ϕ) = 50 + {200\over
π} {\mathop{∑
}}_{n\ odd}{\left ({ρ\over
c}\right )}^{n}{\mathop{sin}\nolimits nϕ\over
n} .
| (8.31) |
We clearly see the dependence of u
on the pure number r∕c,
rather than ρ.
A three dimensional plot of the temperature is given in Fig. 8.2.