11.3 Fourier-Legendre series

Since Legendre’s equation is self-adjoint, we can show that {P}_{n}(x) forms an orthogonal set of functions. To decompose functions as series in Legendre polynomials we shall need the integrals

{\mathop{\mathop{\mathop{∫ }\nolimits }}\nolimits }_{−1}^{1}{P}_{ n}^{2}(x)dx = {2n + 1\over 2} ,
(11.27)

which can be determined using the relation 5. twice to obtain a recurrence relation

\begin{eqnarray} {\mathop{\mathop{\mathop{∫ }\nolimits }}\nolimits }_{−1}^{1}{P}_{ n}^{2}(x)dx& =& {\mathop{\mathop{\mathop{∫ }\nolimits }}\nolimits }_{−1}^{1}{P}_{ n}(x){(2n − 1)x{P}_{n−1}(x) − (n − 1){P}_{n−2}(x)\over n} dx %& \\ & =& {(2n − 1)\over n} {\mathop{\mathop{\mathop{∫ }\nolimits }}\nolimits }_{−1}^{1}x{P}_{ n}(x){P}_{n−1}(x)dx %& \\ & =& {(2n − 1)\over n} {\mathop{\mathop{\mathop{∫ }\nolimits }}\nolimits }_{−1}^{1}{(n + 1){P}_{n+1}(x) + n{P}_{n−1}(x)\over 2n + 1} {P}_{n−1}(x)dx%& \\ & =& {(2n − 1)\over 2n + 1} {\mathop{\mathop{\mathop{∫ }\nolimits }}\nolimits }_{−1}^{1}{P}_{ n−1}^{2}(x)dx, %&(11.28) \\ \end{eqnarray}

and the use of a very simple integral to fix this number for n = 0,

{\mathop{\mathop{\mathop{∫ }\nolimits }}\nolimits }_{−1}^{1}{P}_{ 0}^{2}(x)dx = 2.
(11.29)

So we can now develop any function on [−1,1] in a Fourier-Legendre series

\begin{eqnarray} f(x)& =& {\mathop{∑ }}_{n}{A}_{n}{P}_{n}(x) %& \\ {A}_{n}& =& {2n + 1\over 2} {\mathop{\mathop{\mathop{∫ }\nolimits }}\nolimits }_{−1}^{1}f(x){P}_{ n}(x)dx%&(11.30) \\ \end{eqnarray}

Example 11.4: 

Find the Fourier-Legendre series for

f(x) = \left \{\array{ 0,& − 1 < x < 0 \cr 1,&0 < x < 1} \right ..
(11.31)

Solution: 

We find

\begin{eqnarray}{ A}_{0}& =& {1\over 2}{\mathop{ \mathop{\mathop{∫ }\nolimits }}\nolimits }_{0}^{1}{P}_{ 0}(x)dx = {1\over 2}, %&(11.32) \\ {A}_{1}& =& {3\over 2}{\mathop{ \mathop{\mathop{∫ }\nolimits }}\nolimits }_{0}^{1}{P}_{ 1}(x)dx = {1\over 4}, %&(11.33) \\ {A}_{2}& =& {5\over 2}{\mathop{ \mathop{\mathop{∫ }\nolimits }}\nolimits }_{0}^{1}{P}_{ 2}(x)dx = 0, %&(11.34) \\ {A}_{3}& =& {7\over 2}{\mathop{ \mathop{\mathop{∫ }\nolimits }}\nolimits }_{0}^{1}{P}_{ 3}(x)dx = −{7\over 16}.%&(11.35) \\ \end{eqnarray}

All other coefficients for even n are zero, for odd n they can be evaluated explicitly.