$\newcommand{\lyxlock}{} \newcommand{\rvec}[1]{\underset{\unicode{x3030}}{#1}} \renewcommand{\vec}[1]{\boldsymbol{#1}} \newcommand{\lvec}[1]{\overrightarrow{#1}} \newcommand{\unitvec}[1]{\hat{\boldsymbol{#1}}} \newcommand{\mat}[1]{\mathbf{#1}} \newcommand{\ket}[1]{\left|#1\right\rangle } \renewcommand{\bra}[1]{\left\langle #1|\right|} \renewcommand{\braket}[2]{\left\langle #1|#2\right\rangle} \renewcommand{\braOket}[3]{\left\langle #1|#2|#3\right\rangle } \renewcommand{\ketbra}[2]{\left|#1\rangle\langle#2\right|} \renewcommand{\Clebsch}[6]{\left\langle#1,#2|#3,#4;#5,#6\right\rangle} \renewcommand{\propagator}[2]{K(#1;#2)} \newcommand{\frontmatter}{} \newcommand{\mainmatter}{} \newcommand{\textbook}{} \newcommand{\backmatter}{} \newcommand{\clearpage}{} \newcommand{\addcontentsline}{}$
To be used in future
Section 4.5: Coupling of light to atoms and nuclei: multipole couplings Up Chapter 4: Charged Particles and Electromagnetic Fields Section 4.7: The Pauli-Schrödinger equation

## 4.6 Internal degrees of freedom: spin

Up to this stage we have not looked at internal degrees of freedom, but from the famous Stern-Gerlach experiment (particles with spin in a magnetic field), see Figs. 4.2↓,4.3↓, we know that the internal spin degree of freedom interacts in interesting ways with the magnetic field.
The effect can be described in an ad-hoc way by assuming that the spin degree of freedom (an angular momentum with magnitude ) is aligned by the magnetic field,. This is described by adding a term to the Hamiltonian. Here we have used the empirical value of the Bohr magneton, which we will derive now from first principles.
Section 4.5: Coupling of light to atoms and nuclei: multipole couplings Up Chapter 4: Charged Particles and Electromagnetic Fields Section 4.7: The Pauli-Schrödinger equation