Chapter 4
Bound states of the square well

One of the simplest potentials to study the properties of is the so-called square well potential,

V = \left \{\array{ 0 &|x| > a\cr − {V }_{ 0}&|x| < a } \right ..
(4.1)

square˙well


Figure 4.1: The square well potential

We define three areas, from left to right I, II and III. In areas I and III we have the Schrödinger equation

−{{ℏ}^{2}\over 2m} {{d}^{2}\over d{x}^{2}}ψ(x) = Eψ(x)
(4.2)

whereas in area II we have the equation

−{{ℏ}^{2}\over 2m} {{d}^{2}\over d{x}^{2}}ψ(x) = (E + {V }_{0})ψ(x)
(4.3)

__________________________________________________________________

Solution to a few ODE’s

. In this class we shall quite often encounter the ordinary differential equations

{{d}^{2}\over d{x}^{2}}f(x) = −{α}^{2}f(x)
(4.4)

which has as solution

f(x) = {A}_{1}\mathop{ cos}\nolimits (αx) + {B}_{1}\mathop{ sin}\nolimits (αx) = {C}_{1}{e}^{iαx} + {D}_{ 1}{e}^{−iαx},
(4.5)

and

{{d}^{2}\over d{x}^{2}}g(x) = +{α}^{2}g(x)
(4.6)

which has as solution

g(x) = {A}_{2}\mathop{ cosh}\nolimits (αx) + {B}_{2}\mathop{ sinh}\nolimits (αx) = {C}_{2}{e}^{αx} + {D}_{ 2}{e}^{−αx}.
(4.7)
________________________________________________________________________________________________________

Let us first look at E > 0. In that case the equation in regions I and III can be written as

{{d}^{2}\over d{x}^{2}}ψ(x) = −{2m\over {ℏ}^{2}} Eψ(x) = −{k}^{2}ψ(x),
(4.8)

where

k = \sqrt{{2m\over {ℏ}^{2}} E}.
(4.9)

The solution to this equation is a sum of sines and cosines of kx, which cannot be normalised: Write {ψ}_{III}(x) = A\mathop{cos}\nolimits (kx) + B\mathop{sin}\nolimits (kx) (A, B, complex) and calculate the part of the norm originating in region III,

\begin{eqnarray} {\mathop{\mathop{\mathop{∫ }\nolimits }}\nolimits }_{a}^{∞}|ψ(x){|}^{2}dx& =& {\mathop{\mathop{\mathop{∫ }\nolimits }}\nolimits }_{a}^{∞}|A{|}^{2}{\mathop{ cos}\nolimits }^{2}kx + |B{|}^{2}{\mathop{ sin}\nolimits }^{2}kx + 2ℜ(A{B}^{∗})\mathop{sin}\nolimits (kx)\mathop{cos}\nolimits (kx)dx%& \\ & =& {\mathop{lim}}_{N→∞}N{\mathop{\mathop{\mathop{∫ }\nolimits }}\nolimits }_{a}^{2π∕k}|A{|}^{2}{\mathop{ cos}\nolimits }^{2}(kx) + |B{|}^{2}{\mathop{ sin}\nolimits }^{2}(kx) %& \\ & =& {\mathop{lim}}_{N→∞}N(|A{|}^{2}∕2 + |B{|}^{2}∕2) = ∞. %&(4.10) \\ \end{eqnarray}

We also find that the energy cannot be less than − {V }_{0}, since we vannot construct a solution for that value of the energy. We thus restrict ourselves to − {V }_{0} < E < 0. We write

E = −{{ℏ}^{2}{k}^{2}\over 2m} ,\kern 2.77695pt \kern 2.77695pt \kern 2.77695pt E + {V }_{0} = {{ℏ}^{2}{κ}^{2}\over 2m} .
(4.11)

The solutions in the areas I and III are of the form (i = 1,3)

ψ(x) = {A}_{i}{e}^{kx} + {B}_{ i}{e}^{−kx}.
(4.12)

In region II we have the oscillatory solution

ψ(x) = {A}_{2}\mathop{ cos}\nolimits (κx) + {B}_{2}\mathop{ sin}\nolimits (κx).
(4.13)

Now we have to impose the conditions on the wave functions we have discussed before, continuity of ψ and its derivatives. Actually we also have to impose normalisability, which means that {B}_{1} = {A}_{3} = 0 (exponentially growing functions can not be normalised). As we shall see we only have solutions at certain energies. Continuity implies that

\begin{eqnarray} {A}_{1}{e}^{−ka} + {B}_{ 1}{e}^{ka}& =& {A}_{ 2}\mathop{ cos}\nolimits (κa) − {B}_{2}\mathop{ sin}\nolimits (κa) %& \\ {A}_{3}{e}^{ka} + {B}_{ 3}{e}^{−ka}& =& {A}_{ 2}\mathop{ cos}\nolimits (κa) + {B}_{2}\mathop{ sin}\nolimits (κa) %& \\ k{A}_{1}{e}^{ka} − k{B}_{ 1}{e}^{ka}& =& κ{A}_{ 2}\mathop{ sin}\nolimits (κa) + κ{B}_{2}\mathop{ cos}\nolimits (κa) %& \\ k{A}_{3}{e}^{ka} − k{B}_{ 3}{e}^{−ka}& =& −κ{A}_{ 2}\mathop{ sin}\nolimits (κa) + κ{B}_{2}\mathop{ cos}\nolimits (κa)%&(4.14) \\ \end{eqnarray}

Tactical approach: We wish to find a relation between k and κ (why?), removing as manby of the constants A and B. The trick is to first find an equation that only contains {A}_{2} and {B}_{2}. To this end we take the ratio of the first and third and second and fourth equation:

\begin{eqnarray} k& =& {κ[{A}_{2}\mathop{ sin}\nolimits (κa) + {B}_{2}\mathop{ cos}\nolimits (κa)]\over {A}_{2}\mathop{ cos}\nolimits (κa) − {B}_{2}\mathop{ sin}\nolimits (κa)} %& \\ k& =& {κ[{A}_{2}\mathop{ sin}\nolimits (κa) − {B}_{2}\mathop{ cos}\nolimits (κa)]\over {A}_{2}\mathop{ cos}\nolimits (κa) + {B}_{2}\mathop{ sin}\nolimits (κa)} %&(4.15) \\ \end{eqnarray}

We can combine these two equations to a single one by equating the right-hand sides. After deleting the common factor κ, and multiplying with the denominators we find

\begin{eqnarray} [{A}_{2}\mathop{ cos}\nolimits (κa) + {B}_{2}\mathop{ sin}\nolimits (κa)][{A}_{2}\mathop{ sin}\nolimits (κa) − {B}_{2}\mathop{ cos}\nolimits (κa)]&& %& \\ & =& [{A}_{2}\mathop{ sin}\nolimits (κa) + {B}_{2}\mathop{ cos}\nolimits (κa)][{A}_{2}\mathop{ cos}\nolimits (κa) − {B}_{2}\mathop{ sin}\nolimits (κa)],%&(4.16) \\ \end{eqnarray}

which simplifies to

{A}_{2}{B}_{2} = 0
(4.17)

We thus have two families of solutions, those characterised by {B}_{2} = 0 and those that have {A}_{2} = 0.

 4.1 {B}_{2} = 0
 4.2 {A}_{2} = 0
 4.3 Some consequences
 4.4 Lessons from the square well
 4.5 A physical system (approximately) described by a square well