Warning:
jsMath
requires JavaScript to process the mathematics on this page.
If your browser supports JavaScript, be sure it is enabled.
[forward]
[up]
Contents
1
Introduction and Prerequisites
1.1
Prerequisites
2
Linear vector spaces
2.1
Definition of a linear vector space
2.1.1
Problems
2.2
Linear independence and basis vectors
2.2.1
The scalar product
2.2.2
Questions
2.3
Function spaces
2.3.1
Continuous basis functions: Fourier Transforms
2.3.2
General orthogonality and completeness in function spaces
2.3.3
Example from Quantum Mechanics
2.4
Appendix
3
Operators, Eigenvectors and Eigenvalues
3.1
Linear operators
3.1.1
Domain, Codomain and Range
3.1.2
Matrix representations of linear operators
3.1.3
Adjoint operator and hermitian operators
3.2
Eigenvalue equations
3.2.1
Problems
3.3
Sturm-Liouville equations
3.3.1
How to bring an equation to Sturm-Liouville form
3.3.2
A useful result
3.3.3
Hermitian Sturm Liouville operators
3.3.4
Second solutions, singularities
3.3.5
Eigenvectors and eigenvalues
3.4
Series solutions and orthogonal polynomials
3.4.1
The quantum-mechanical oscillator and Hermite polynomials
3.4.2
Legendre polynomials
3.4.3
Bessel functions and the circular drum
4
Green functions
4.1
General properties
4.1.1
First example: Electrostatics
4.1.2
The eigenstate method
4.1.3
The continuity method
4.2
Quantum mechanical scattering
4.3
Time-dependent wave equation
4.3.1
Solution for the Green function by Fourier transforms
4.3.2
Wave equations in
(2 + 1)
dimensions
5
Variational calculus
5.1
Functionals and stationary points
5.2
Stationary points
5.3
Special cases with examples: first integrals
5.3.1
Functional of first derivative only
5.3.2
No explicit dependence on
x
5.4
Generalisations
5.4.1
Variable end points
5.4.2
One endpoint free
5.4.3
More than one function: Hamilton’s principle
5.4.4
More dimensions: field equations
5.4.5
Higher derivatives
5.5
Constrained variational problems
5.5.1
Lagrange’s undetermined multipliers
5.5.2
Generalisation to functionals
5.5.3
Eigenvalue problems
5.5.4
The Rayleigh-Ritz method
A
Contour Integration
A.1
The Basics
A.2
Contour Integration
A.3
Residues
A.4
Example 1: Simplest case
A.5
Example 2: Complex exponentials
A.6
Final case: poles on the real axis
[forward]
[up]